

GRAND Science Case: high-energy neutrino astronomy for real

Kumiko Kotera - Institut d'Astrophysique de Paris

GRAND workshop - 09/02/2015

deflection : spatial decorrelation time delay : temporal decorrelation if transient source

What UHECR source(s)?

some associated issues:

- injected chemical composition?

10

interaction backgrounds e.g., Stecker et al. 06 are fixed Kneiske et al. 04 equ/de (cm³) 10⁻¹ 10⁻² 10⁰ IR/opt/UV(z=0) Stecker et al., 2005 10⁻³ CMB 10-4 10⁻⁵ 10-3 10-2 10⁰ 10 10¹ ε (eV)

What UHECR source(s)?

some associated issues:

- injected chemical composition?

- → maximum injected energy?

fit to observed spectrum of UHECRs

fit to observed spectrum of UHECRs

3

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

4

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$

cosmological source evolution ~ star formation rate

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

4

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

in terms of neutrino detection: in "reasonable" param. range, EeV region is safe

in terms of getting info on sources: once EeV region has been observed, PeV region can help discriminate composition and Galactic/extraGal. transition models

> sad cases for neutrino detection: iron and/or no source evolution

> > "reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

in terms of neutrino detection: in "reasonable" param. range, EeV region is safe

in terms of getting info on sources: once EeV region has been observed, PeV region can help discriminate composition and Galactic/extraGal. transition models

> sad cases for neutrino detection: iron and/or no source evolution

> > "reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

in terms of neutrino detection: in "reasonable" param. range, EeV region is safe

in terms of getting info on sources: once EeV region has been observed, PeV region can help discriminate composition and Galactic/extraGal. transition models

> sad cases for neutrino detection: iron and/or no source evolution

in terms of neutrino detection: in "reasonable" param. range, EeV region b safe

in terms of getting info on sources: once EeV region has been observed, PeV region can help discriminate composition and Galactic/extraGal. transition models

> sad cases for neutrino detection: iron and/or no source evolution

> > "reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution ~ star formation rate

Galactic/extragalac transition of cosmic rays

neutrino spectra:

serious information on

maximum injected energy at UHECR sources

"reasonable"

proton to Galactic mixed composition $E_{Z,max} > Z \times 10^{19} \text{ eV}$ cosmological source evolution \sim star formation rate

Neutrinos produced at the source (diffuse flux)

acceleration region (internal/external/reverse shock?) cosmic ray composition ...

Baerwald et al. 14

7

Neutrinos produced at the source (diffuse flux)

Neutrinos produced at the source (diffuse flux)

What one could do with many very high energy neutrinos

constrain source populations by stacking analysis

@ position of ultraluminous SN, blazars (flares), GRBs...

understand the origin of IceCube neutrinos

Ultimate goal: neutrino astronomy

observe neutrinos in coincidence with e-m signal
 neutrinos astronomy of one object
 time variability of neutrino signal

time-variability of neutrino signal

constrain source populations by stacking analysis

@ position of ultraluminous SN, blazars (flares), GRBs...

understand the origin of IceCube neutrinos

Ultimate goal: neutrino astronomy

observe neutrinos in coincidence with e-m signal
 neutrinos astronomy of one object
 time-variability of neutrino signal

best with transient objects

powerful
not so rare for many types
(ultraluminous SN, blazar flares...)
best candidate to produce UHECRs

Total energy budget and number density of sources

transient sources

lack of multiplets in the sky (many events from small angular spot)

> apparent number density of sources:

Kashti & Waxman 08, Takami & Sato 09, Abreu et al. 2013

10⁻⁶ Mpc⁻³ clusters steady sources FRII 10⁻⁸ Mpc⁻³ 10⁻⁵ Mpc⁻³ FRI AGN flares Long GRB pulsars

lack of multiplets in the sky (many events from small angular spot)

> apparent number density of sources:

Kashti & Waxman 08, Takami & Sato 09, Abreu et al. 2013

Total energy budget and number density of sources

lack of multiplets in the sky (many events from small angular spot)

> apparent number density of sources:

Kashti & Waxman 08, Takami & Sato 09, Abreu et al. 2013

for transient sources: real number density of UHE proton sources $\rho_0 \sim n_0$ / (CR time spread τ_d)

 τ_d depends on extragalactic + Galactic magnetic fields (not known)

lack of multiplets in the sky (many events from small angular spot)

> apparent number density of sources:

Kashti & Waxman 08, Takami & Sato 09, Abreu et al. 2013

for transient sources: real number density of UHE proton sources

 $\rho_0 \sim n_0$ / (CR time spread τ_d)

 τ_d depends on extragalactic + Galactic magnetic fields (not known)

lack of multiplets in the sky (many events from small angular spot)

 \succ apparent number density of sources:

Kashti & Waxman 08, Takami & Sato 09, Abreu et al. 2013

for transient sources: real number density of UHE proton sources

 $ho_0 \sim n_0$ / (CR time spread au_d)

 τ_d depends on extragalactic + Galactic magnetic fields (not known)

steady sources

transient sources

transient sources

lack of multiplets in the sky (many events from small angular spot)

transient sources

transient sources can mimick a high density source population distribution in the sky due to time delay

transient sources can mimick a high density source population distribution in the sky due to time delay

transient sources can mimick a high density source population distribution in the sky due to time delay

transient sources can mimick a high density source population distribution in the sky due to time delay

 \triangleright correlation of neutrino events with e-m signal from transient = source identification!

transient sources can mimick a high density source population distribution in the sky due to time delay

correlation of neutrino events with e-m signal from transient = source identification!

RESEARCHARTICLE

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

IceCube Collaboration*

We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up

oratory, RIKEN

51-0198 Japan 81-48-467-4078

at the IceCube Detector

IceCube Collaboration*

We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up

