

Neutrino Induced Air Shower Monte Carlo Simulations

Tanguy Pierog, R. Engel, D. Heck

Karlsruhe Institute of Technology, Institut für KernPhysik, Karlsruhe, Germany

G. Poghosyan

Simulation Lab E&A Particles, SCC, Karlsruhe, Germany

GRAND Workshop, LPNHE, Paris, France February the 9th 2015

Outline

- Neutrino induced showers
 - energy reconstruction
- Neutrino and inclined shower in CORSIKA
- Large scale air shower simulations
 - Parallelization
 - Cascade equations
- Summary

Full energy reconstruction depend on interaction process and parallelization of CORSIKA simulations allows large scale radio simulations.

Neutrino Interaction

- At high energy neutrino-nucleus interaction via Deep Inelastic Scattering
 - \clubsuit exchange of a weak boson (W^{+/-} or Z⁰) with a quark in the nucleus :
 - electro-weak cross section well describe by Standard Model
 - depends on parton distribution function with large uncertainty at small momentum fraction x

Neutrino Interaction

- At high energy neutrino-nucleus interaction via Deep Inelastic Scattering
 - \rightarrow exchange of a weak boson (W^{+/-} or Z⁰) with a quark in the nucleus :
 - electro-weak cross section well describe by Standard Model
 - depends on parton distribution function with large uncertainty at small momentum fraction x

Neutrino Interaction

- At high energy neutrino-nucleus interaction via Deep Inelastic Scattering
 - \rightarrow exchange of a weak boson (W^{+/-} or Z⁰) with a quark in the nucleus :
 - electro-weak cross section well describe by Standard Model
 - depends on parton distribution function with large uncertainty at small momentum fraction x

Energy Reconstruction

• Interaction :
$$v_{\ell} + N \rightarrow v/\ell + X$$

 \bullet E_v=E_i+E_x or E_x=yE_v where y is called inelasticity

➡ for all <y>~0.2 but with large spread

- Primary Energy known only if \mathbf{E}_{l} can be measured

Energy Reconstruction

• Interaction :
$$v_{\ell} + N \rightarrow v/\ell + X$$

 \bullet E_v=E_i+E_x or E_x=yE_v where y is called inelasticity

➡ for all <y>~0.2 but with large spread

Primary Energy known only if E, can be measured

Energy Reconstruction

• Interaction : $\mathbf{v}_{\ell} + \mathbf{N} \rightarrow \mathbf{v}/\ell + \mathbf{X}$

 \bullet E_v=E_i+E_x or E_x=yE_v where y is called inelasticity

➡ for all <y>~0.2 but with large spread

Neutrino Showers in CORSIKA

- Primary interaction done by external program
 HERWIG 5.10
- Possibility to get random interaction or select CC or NC and inelasticity
 Neutrino induced EAS are similar to hadron induced EAS but
 - \rightarrow large X_{max} due to low cross-section
 - large N_{max} fluctuations due to varying inelasticity
 - double bump in case of Tau neutrino

neutrino @ 0.5EeV from Moura & Guzzo (2007)

Neutrino Showers in CORSIKA

- Primary interaction done by external program
 HERWIG 5.10
- Possibility to get random interaction or select CC or NC and inelasticity
 Neutrino induced EAS are similar to hadron induced EAS but
 - \rightarrow large X_{max} due to low cross-section

Inclined Showers in CORSIKA

- Original CORSIKA development for KASCADE experiment
 - vertical showers with planar geometry only

Inclined Showers in CORSIKA

- Original CORSIKA development for KASCADE experiment
 - vertical showers with planar geometry only
- Extension to curved geometry in 2001 for Cerenkov telescopes and neutrino induced showers
 - extension of planar geometry

CURVED & UPWARD options

- For very inclined showers, CURVED option is mandatory
 For radio simulations of inclined shower, UPWARD option is necessary
 - otherwise particles going upward compared to ground are not tracked

	planar		spherical	
zenith angle	distance	slant depth	distance	slant depth
degree	km	g/cm ²	km	g/cm ²
0	112.8	1036.1	112.8	1036.1
30	130.3	1196.4	129.9	1196.0
45	159.6	1465.3	158.2	1463.7
60	225.7	2072.2	220.1	2065.3
70	329.9	3029.4	310.7	3003.9
80	649.8	5966.7	529.0	5765.9
85	1294.6	11887.9	770.9	10572.1
89	6465.0	59367.2	1098.3	25920.4
90	[∞]	∞	1204.4	36481.8

Parallelization of CORSIKA with MPI

Low energy secondaries down to observation level

Parallelization of CORSIKA

- Each shower is simulated on a large number of CPU
 - Simulation time reduction limited by the number of machines
 - Disk space problem solved by saving particles in detectors only

possible only if simulation time is short

solution at high energy : unthinned simulations for each real events

Parallel version tested on HP XC3000 (2.53 GHz CPUs, InfiniBand 4X QDR)

Parallelization of CORSIKA

- Each shower is simulated on a large number of CPU
 - Simulation time reduction limited by the number of machines
 - Disk space problem solved by saving particles in detectors only

possible only if simulation time is short

solution for large radio antenna array : each antenna signal shared on large number of CPU

Parallel version tested on HP XC3000 (2.53 GHz CPUs, InfiniBand 4X QDR)

CORSIKA with **CONEX**

GRAND. - Feb - 2015

T. Pierog, KIT - 17/21

Properties

- CORSIKA replace part of the CE
 - First interactions in CONEX independent from E_{low}
 - Event-by-event simulations using first 1D only and then 3D with exactly the same shower (Golden Hybrid, radio)
- CE replace part of the thinning in CORSIKA
 - No thinned high energy gammas (stay in CE)
 - No muons from EM particles with very large weight
 - Very narrow weight distributions : less artificial fluctuations
 - No thinning for very inclined shower
 - Only muons and corresponding EM sub-showers in MC
- CONEX and CORSIKA are independent
 - Different media might be used
- Mean showers can be simulated directly (no high energy MC)
 Fast Initial condition for macroscopic radio simulations (SELFAS)

CONEX v4.37 in CORSIKA v7.4

CONEX as an option in CORSIKA

- SENECA like : hybrid type 3D simulation
 - same seed = same shower (1D (fast) or 3D (slow))
- CORSIKA running script and installation
- CORSIKA input
 - one more line in steering file for CONEX parameters
- CORSIKA output
 - no new interface (MC compatible with COAST)
- CORSIKA low energy hadronic interactions models
- CONEX high energy hadronic interaction models
 - EPOS LHC, QGSJET01, QGSJETII-04, SIBYLL 2.1
- NOT COMPATIBLE WITH NEUTRINO PRIMARY YET

Possibility to do it if requested

Parallelization

Example

QGSJET01/GHEISHA Iron shower 10¹⁹ eV MC : 49h (max weight = 1000(em)/100(had)) Hyb : 10h (max weight = 1000(em)/100(had))1 shower (same seed) : X_{max} =670(MC) / 673(Hyb) g/cm² 1.5 N(1000m) $-\gamma MC$ 1.4 **10**⁷ ····· γ Hybrid 1.3 - μ CORSIKA MC **10⁶** ····· μ CONEX Hybrid 1.2 1.1 10⁵ 10⁴ 0.9 0.8 10³ 0.7 10^{2} 0.6 3.6 3.8 3.2 1.6 3 3.4 1.8 5.58 5.5805 5.578 5.5785 5.579 5.5755 5.576 5.5765 5.577 5.5775 5.5795 $Log_{10}(\mathbf{R}(\mathbf{m}))$ log(t/ns))

GRAND. - Feb - 2015

Ratio Hybrid/MC

Summary

Neutrino interactions

- deep showers with large fluctuations
- full energy reconstruction from air showers possible for electron neutrinos and part of tau neutrinos (~50% of neutrino showers) with CC interactions but not for muon neutrinos and NC. But no ambiguity only in case of double bump showers due to Tau neutrino (<30%) ...</p>

Air Shower simulations

- Neutrino primary interactions using HERWIG
- CURVED and UPWARD for inclined showers
- new solutions for fast simulations
 - Parallel calculation : large number of antenna possible with CoREAS on large CPU cluster.
 - CONEX calculation : macroscopic radio simulation

new development needed in CORSIKA for neutrino induced showers with CONEX

Example : 1 shower with different thresholds

Same profile within 3%

Example : 3D View with COAST

- MC 3D : no cascade equation
 - CONEX MC at high energy
 - CORSIKA at low energy
 - Track connection at bin boundary

Purple : CONEX hadrons Dark blue : CONEX muons Dark : CORSIKA hadrons Blue : CORSIKA muons

Example : 3D View with COAST

- Hybrid 3D : Cascade equation only at intermediate energy
 - High energy particle tracks until bin boundaries
 - Low energy particle tracks from bin boundaries

Purple : CONEX hadrons Dark blue : CONEX muons Dark : CORSIKA hadrons Blue : CORSIKA muons

Example : 3D View with COAST

- Hybrid 1D : Cascade equation only at low energy
 - Particle track only until bin boundaries
 - Interaction off leading particles

Purple : CONEX hadrons Dark blue : CONEX muons

Example : 1 shower with different thresholds

Proton @ 0.1 EeV EGS4 off QGSJET + GHEISHA

Reasonable results for CE but hadronic MC needed for precise results

Example : 3D View with COAST

- 3D muons : Cascade equation only for hadrons
 - Muon tracks start from bin boundaries
 - Muons generated with realistic angular distribution

Blue : CORSIKA muons