The Auger Observatory and UHE neutrinos

* Why UHE neutrinos ?
* What is the Pierre Auger Observatory ?
* How can it see UHE neutrinos ?
* How to discriminate them ?
* Upper bounds to fluxes

Pierre Billoir , LPNHE Paris Auger Collaboration

possible sources of UHE neutrinos

• interaction of accelerated particles with nucleons/photons in the source region or with the CMBR during propagation (GZK effect): *relatively soft spectrum*

 decay of ultra massive objects (scale of Grand Unification ?) harder spectrum expected
 UHE photons and neutrinos are a signature of top-down scenarii

v's propagate in straight line over cosmological distances \rightarrow point back to the source (or GZK interaction point ...) but: low probability to produce an atmospheric shower

possible interesting byproducts of the Auger Observatory (confirm GZK mechanism and test "exotic" models)

the Pierre Auger Observatory 1600 surface detectors + 4x6 fluorescence telescopes

Auger surface array: water Cherenkov tanks

fluorescence data not yet used in this study (less statistics)

atmospheric shower development

electromagnetic cascade + muons (from hadronic cascade)

"artistic" simulation (exaggeration of transverse expansion)

evolution of shower front shape:- curved and thick when "young"- flatter and thin when "old"

"normal" (nucleic) showers

muons + electromagnetic

a real horizontal event (80 deg)

"single" peaks : fast rise + exp. light decay ($\tau \sim 70$ ns) accidental background signals are similar

examples of ground spots

decay of an horizontal τ of 1 EeV

evv (almost pure e.m. cascade)

 $\pi\nu$ (hadronic+e.m. cascade)

simulated neutrino event (1)

simulated neutrino event (2)

characterization of "young" showers (trigger + offline analysis)

offline: "FADC trace cleaning" (removing accidental signals) computing AOP (Area/Peak) (normalized to 1 for single particle signals)

characterization of horizontal showers ("footprint" analysis)

variables defined from the footprint (*in any configuration, even aligned*)

• length L and width W

(major and minor axis of the ellipsoid of inertia)

• *"speed"* for each pair of stations (distance/difference of time)

trigger efficiency

example: fraction of quasi-horizontal decaying τ (excluding $\mu\nu\nu$ channel) giving a trigger, as a function of *altitude*

effective detection volume: slice (0,h_{max})

Similar results for down-going showers, with effective slice (h_{min}, h_{max})

Strategy to obtain fluxes or upper bounds

down-going v candidates 1. first selection of inclined events

- 4 or more triggered stations
- \bullet mean speed < 0.313 m/ns $\,$ and rms/mean < 0.08
- $\theta_{rec} > 75$ deg (if aligned stations: assume line direction for ϕ)

- Length/Width > 3
- $|\phi_{ellipse}$ $\phi_{rec}| < 10 \text{ deg}$

Then: search for broad signals at least in the first stations (early part of the shower development)

```
→see next slide
```

Note: more severe selection needed in the range (75,90) than in (90,95) for up-going ones (more phase space for background)

down-going v candidate selection 2. discriminating variables for broad signals AreaOverPeak (1st station) product of AOPs (4 stations) 1 Mean 0.2771 Mean 1.188 10⁻¹ 10 RMS 0.1246 RMS 0.1787 10⁻² Mean 1.554 10⁻² Mean 3.213 RMS 0.4411 10^{-3} RMS 1.204 10⁻³ 104 10-4 10⁻⁵ 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁷ 10⁻⁷ 10 12 14 16 18 20 n AOP 1 log10(AOP_1*AOP_2*AOP_3*AOP_4) training real data vs simulated neutrino showers large range without overlap to avoid tails from bad data: restrict the range of AOP (smooth cut)

down-going v candidate selection 3. Fisher analysis

low altitude v showers are well separated from real data

backgrounds

physics: tail of hadronic showers (hard muon interaction) or photon induced showers (delayed by LPM effect): large uncertainties but probably negligible
detector: monitoring of PMT response → abnormal shapes may be removed

exponential extrapolation of real background → may be reduced to 1 event per 10, 20 or 100 years without losing much efficiency on neutrinos

real array aperture calculation (effective array depending on time)

main systematic errors

- cross section of neutrinos (Cooper-Sarkar, Sarkar 08) $\sim 10\%$
- simulations (hadronic model, thinning, software) $\sim 20 \%$
- topography (Andes mountains, Pacific Ocean) ~ 15 % (accounted for; fully reliable simulation in progress)

specific to up-going ν_τ

- energy loss of τ in earth -dE/dx = a + b.E + 25% 10%
 - bremsstrahlung + pair production : *well defined*
 - deep inelastic scattering in photonuclear processes:
 - depends on *structure functions* to be extrapolated in (x,Q^2)
- τ polarization (« visible » fraction of decay products) +17% -10%

summary and perspectives

- the Pierre Auger Observatory is sensitive to UHE neutrinos
 - atmospheric interactions (all flavours)
 - earth skimming ($v_{\tau} \rightarrow \tau$ in earth + decay of τ in air)
- real data are *clean* (or easy to clean up)

• horizontal showers: simple criteria allow to reject both the *accidental* and the *physical* background without losing much efficiency for neutrinos

expected improvement: new triggers (better efficiency at low energy)

• top-down predictions are strongly disfavoured (confirmation of result on UHE photon flux)

• we reach GZK predictions: *UHE neutrino discovery or constraining upper bounds expected within a few years*

more details on ν_τ analysis: Phys. Rev. D79 (2009) 102001 results with data up to 2010: Phys. Rev. D84 (2011) 122005