ZHAireS and neutrino radio detection

Washington Rodrigues de Carvalho Jr.

Universidade de Santiago de Compostela

carvajr@gmail.com

GRAND Workshop, LPNHE, Paris February 9th 2015

Overview

1

ZHAireS and ZHAireS-Reflex

- Emission Mechanisms
- The ZHAireS code
- Polarization and the Cherenkov ring
- Some comparisons with data
- The Two-component approach approximation
- ZHAireS-Reflex

Radio array sensitivity to Earth-Skimming $u_{ au}$

- End to end simulation
- Efficiency and Exposure
- Sensitivity of a radio array

Emission mechanisms

- Two main emission mechanisms:
 - Geomagnetic emission mechanism
 - Askaryan or charge excess emission mechanism
- Moving charged particles radiate
- Movement can be described in terms of a current $\vec{J}(t)$
- From Lienard-Wiechert potentials (disregarding static term):

Askaryan Mechanism

- Dominates emission in dense media
- Electron and positron currents are opposite

• Emission is due to an excess of electrons in the shower

• Shower front entrains electrons from medium (Compton, Møller, Bhabba and positron anihilation)

G.A. Askaryan, Soviet JETP 21 (1965) 658

Geomagnetic mechanism

- Dominates emission in atmospheric showers
- Charged particles deflected by geomagnetic field \vec{B}
- Emission from electrons and positrons add up

F.D. Kahn and I. Lerche, Procs. Royal Society A 289 (1966) 206

The ZHAireS code

ZHAireS (ZHS + Aires):

- Simulation of radio emission in air showers and dense media (ice)
- Full shower simulation using Aires
- Radio emission calculation based on ZHS algorithms
- First microscopic simulation with refractive index n > 1 and varying n(h)
- Can easily simulate emission of neutrino induced showers (special primary)

AstropaPhys, 35, 325, 2012 and AstropaPhys, 35, 287, 2012

ZHS algorithms:

- First principles (Maxwell) No emission model presupposed.
- Geomagnetic, Charge Excess (Askaryan), etc... all included
- Frequency- and Time-domain calculations of vector potential \vec{A} and electric field \vec{E}
 - Zas, Halzen, Stanev, Phys.Rev.D V45, 362 (1992) and Phys.Rev.D81:123009,2010

Extended ZHS algorithms: Time and Frequency domains

- Time domain $\vec{A}(t, \hat{u}) = \frac{\mu e}{4\pi Rc} \vec{\beta}_{\perp} \frac{\Theta(t - t_1^{det}) - \Theta(t - t_2^{det})}{1 - n \vec{\beta} \cdot \hat{u}}$
- Frequency domain $\vec{E}(\omega, \hat{u}) = -\frac{\mu e}{2\pi c} \vec{\beta}_{\perp} \frac{e^{i\omega(t-t_1^{det})} - e^{i\omega(t-t_2^{det})}}{1 - n\vec{\beta} \cdot \hat{u}}$

Polarization

Geomagnetic mechanism polarization (\vec{G})

- Aproximatelly paralell to $-\vec{V} \times \vec{B}$
- Independant of observer position

Askaryan mechanism polarization (\vec{A})

- Aproximatelly radial w.r.t. shower axis \vec{V}
- Depends on observer position

Superposition of emission mechanisms: Asymmetries Vertical shower with horizontal \vec{B}

Superposition of emission mechanisms: Asymmetries Vertical shower with horizontal \vec{B}

Vertical shower with horizontal \vec{B}

North of core

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

February 9th 2015 9 / 36

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

Vertical shower with horizontal \vec{B}

North of core

EW component: pure geomagnetic NS component: pure Askaryan

Askaryan and geomagnetic have **opposite** directions: They **subtract**

East of core

Askaryan and geomagnetic are parallel: They **add up**

South of core

EW component: pure geomagnetic NS component: pure Askaryan

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

February 9th 2015 9 / 36

ZHAireS and neutrino radio detection

Cherenkov Ring

Observers that see X_{\max} at θ_{C}

- Define a ring-like region on the ground
- Maximum field amplitude
- Sizeable intensity well into the GHz range
- Ring is elliptical for non-vertical showers

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

February 9th 2015 11 / 36

ZHAireS simulations in good agreement with data

Very good agreement of the RLDF shape

ZHAireS and neutrino radio detection

Two-component approach approximation

- Significantly reduces computing time
- Based on superposition of Askaryan and geomagnetic components
- Field at any position extrapolated from few antenna simulations
- Very good agreement with full simulation for most geometries

ZHAireS-Reflex

- Special ZHAireS code
- Reflection on ground (ice) and propagation to a high altitude detector
- Includes the Fresnel reflection coefficients

ZHAireS-Reflex

- Special ZHAireS code
- Reflection on ground (ice) and propagation to a high altitude detector
- Includes the Fresnel reflection coefficients

ZHAireS and neutrino radio detection

Fresnel coefficients

ZHAireS and neutrino radio detection

Full reflection simulation vs. ground signal extrapolation

Full reflection simulation vs. ground signal extrapolation

Summary

- We now have a good undertanding of the radio emission of EAS
- ZHAireS can describe the details of this emission
- Good agreement with data
- A simple two-componnet approach can be used to drastically reduce computing time
- ZHAireS-Reflex performs full reflection simulations
- Fresnel coefficients of utmost importance
- Full reflection simulations differs considerably from ground signal extrapolation

Radio array sensitivity to Earth-Skimming $u_{ au}$

Jaime Alvarez-Muñiz¹ Pablo Pieroni²

¹Departamento de Física de Partículas & Instituto Galego de Física de Altas Enerxías Universidad de Santiago de Compostela, España.

²Departamento de Física - Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Argentina.

February 9th 2015

End to end simulation

Simulation stages

P(τ, ν_τ): Probability to obtain a τ with (E_τ, θ) given a ν_τ with (E_ν, θ) using our code
τ decay products obtained with TAUOLA
Shower evolution and antenna signal calculation with ZHAireS
Antenna response and efficiency calculation using our code

Radio footprint

Cherenkov emision projected on the ground

Width w of hyperbola:

$$w^{2} = \left[\tan^{2}\theta_{cher} - \tan^{2}\left(\theta - \frac{\pi}{2}\right)\right] \left(\frac{d}{\sin\theta} - I_{max}\right)^{2} - \tan\left(\theta - \frac{\pi}{2}\right) \frac{h_{max}}{\sin\theta} \left(\frac{d}{\sin\theta} - I_{max}\right) - \frac{h_{max}^{2}}{\sin^{2}\theta} \frac{h_{max}}{\sin^{2}\theta} \frac{h_{max}^{2}}{\sin^{2}\theta} + \frac{h_{max}^{2}}{\sin^{2}\theta} \frac{h_{max}}{\sin^{2}\theta} \frac{h_{max}^{2}}{\sin^{2}\theta} + \frac{h_{max}^{2}}{\sin^{2}\theta} \frac{h_{max}^{2}}{\sin^{2}\theta} + \frac{h_{max}^{2}}{\sin^{2}\theta} \frac$$

J.Alvarez-Muñiz, P. Pieroni (USC-UBA) Radio array sensitivity to Earth-Skimming ν_{τ}

Radio footprint

Energy of the tau that goes into shower $\sim 1~{\rm EeV}$

Very elongated and narrow footprints (hyperbola)
 In agreement with prediction from simple model of Cherenkov cone emission

Efficiency calculation

Shower energy: $1 \ {\rm EeV}$

- Example: Squared grid array. 900 m separation between antennas.
- Big enough to contain the whole radio footprint (hyperbola).
- 1000 random core positions in each $(E_{shower}, \theta, \tau_{decay Height})$ bin.
- Antenna response 30 80 MHz/150 900 MHz.
- Trigger if n antennas above threshold (selected by user)
- Neutrino identification efficiency (conservatively) assumed to be 90%
 - Based on the apparent velocity of the signal and the width w of the footprint.
 - Identification criteria not yet optimized

Exposure calculation

Formula

$$\mathcal{E}(E_{\nu}) = 2\pi TA \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(X_{d}, \theta, E_{sh}) \frac{e^{-\frac{l(X_{d})}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dl(X_{d})}{dX_{d}} P(E_{sh}|E_{\tau})$$
$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta dX_{d}$$

Ingredients

- Time and area
- Trigger and ν identification efficiency
- Probability of τ decay at vertical depth X_d in atmosphere.
- Probability of au of energy $E_{ au}$ producing shower of energy E_{sh}
- Interaction of ν_{τ} inside Earth
- Solid angle

Sensitivity of a radio array (3 yr)

Differential limit calculation

Assume
$$\nu$$
 flux: $\Phi_{\nu} = k E_{\nu}^{-2} \Rightarrow \text{Sensitivity} = \frac{2.4}{E_{\nu}^{-2} \mathcal{E}(E_{\nu})\Delta E_{\nu}}$ with $\Delta E_{\nu} = \text{half a decade in } E_{\nu}$

Radio array: 90,000 antennas, 900 imes 900 m grid - Trigger threshold 50-350 $\mu {
m V/m}$

The End

Questions?

Other applications of Radio...

Askaryan Mechanism

- Dominates emission in dense media
- Electron and positron currents are opposite

Emission is due to an excess of electrons in the shower

• Shower front entrains electrons from medium (Compton, Møller, Bhabba and positron anihilation)

G.A. Askaryan, Soviet JETP 21 (1965) 658

A_{Ask} reflects the charge excess

- ZHAireS: Ice ν_e cascade with $E_0 = 10$ EeV
- CC with $0.8E_0$ going into an e^- (LPM!!!)

NIMA 662, S187-S190, (2010) - ARENA2010

Washington Carvalho (USC)

ZHAireS and neutrino radio detection

Cherenkov-like effects

Relativistic effects play crucial role in emission

- Stem from atmospheric refractive index n > 1 (n=1.000325 @ sea level)
- Shower front travels faster than emission
- Time reversal / multiple parts of EAS seen simultaneously
- Large "time compression" around part seen at $\theta_C = \cos^{-1}(1/n)$

Washington Carvalho (USC)

Two-component approach approximation

- Significantly reduces computing time
- Superposition of Askaryan and geomagnetic components assuming their theoretical polarizations and elliptical symmetry
- Field at any position can be extrapolated from of a single line of antenna simulations
- Very good agreement with full simulation for most geometries

ANITA UHECR detection

- Designed for detection of v showers in antarctic ice
- detected 16 UHECR: 14 of them reflected on ice
- Compatible with Geomagnetic mechanism
- GHz emission due to time compression effects

USC: Long tradition in the radio technique

ZHS: First simulations of radio emission (Dense media-Askaryan)

- 1990: Zas (USC), Halzen (Univ. Winscosin) and Stanev (Univ. Delaware)
- Algorithm based on first principles
- Dense media, EM shower, Frequency domain
- Several later studies/developmnets

ZHAireS: ZHS + AIRES

- 2009: ZHS algorithm extended to the time domain and Fresnel approximation
- Full shower simulation (AIRES)
- Air Showers and Dense Media (TIERRAS)
- First microscopic simulation with refractive index n > 1 and varying n(h)
- 2013: Only simulation capable of simulating reflected events (ANITA, SWORD)