

Physics of the Epoch of Reionization

Françoise Combes

Grand - 2015

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

The epoch of reionization:

4

wavelength (A)

Fan et al 2006

EoR: when?

IGM emission/absorption at 21cm for 6<z<30: →Tomography with SKA

$$\tau = \int dt \, c \, \sigma_{\rm T} \, n_{\rm e} = \int \frac{dz}{H(z)(1+z)} c \, \sigma_{\rm T} \, n_{\rm e}(z)$$

Constraints from the CMB, WMAP, Planck, and QSO

$\tau e= 0.09$ EoR between z=15 and 6

Mitra 2014

New opacity from Planck

 τ = 0.066<u>+</u>012 Requires less galaxies at z>8

Robertson et al 2015

Star formation in the early universe

Dark ages z=200-30 ?? From space

Cosmic Dawn z=30-15 First stars, the HI Tb will be a mixture of density and Ts

EoR z=15-6 Bubbles around the first galaxies, percolate

Hirano et al 2014

$\begin{aligned} & \mathsf{Main equations} \\ \mathsf{T}_{\mathsf{b}} = \mathsf{T}_{\mathsf{CMB}} \mathsf{e}^{-\tau} + \mathsf{T}_{\mathsf{S}} (1 - \mathsf{e}^{-\tau}) \quad \text{if } \delta \mathsf{T}_{\mathsf{b}} = \mathsf{T}_{\mathsf{b}} - \mathsf{T}_{\mathsf{CMB}} \approx \frac{\mathsf{T}_{\mathsf{s}} - \mathsf{T}_{\mathsf{CMB}}}{1 + z} \tau \\ & \tau_{\nu_0} = \frac{3}{32\pi} \frac{hc^3 A_{10}}{k_B T_S \nu_0^2} \frac{x_{\mathrm{HI}} n_H}{(1 + z) (\mathrm{d} v_{\parallel} / \mathrm{d} r_{\parallel})} \\ & \approx 0.0092 (1 + \delta) (1 + z)^{3/2} \frac{x_{\mathrm{HI}}}{T_S} \left[\frac{H(z)/(1 + z)}{\mathrm{d} v_{\parallel} / \mathrm{d} r_{\parallel}} \right] \end{aligned}$

$$\begin{split} \delta T_b(\nu) &= \frac{T_S - T_{\gamma}(z)}{1+z} (1 - e^{-\tau_{\nu_0}}) \approx \frac{T_S - T_{\gamma}(z)}{1+z} \tau_{\nu_0} \\ &\approx 9 x_{\rm HI} (1+\delta) (1+z)^{1/2} \left[1 - \frac{T_{\gamma}(z)}{T_S} \right] \left[\frac{H(z)/(1+z)}{dv_{\parallel}/dr_{\parallel}} \right] \ {\rm mK}. \end{split}$$

LSS: Neutral fraction / Cosmic density / Temperature: Spin, CMB

Dark Ages HI 21cm signal

•z > 200: $T\gamma = T_K = Ts$ due to collisions + Thomson scattering \rightarrow No signal

•z ~ 30 to 200: T_K decouples from T γ , but collisions keep Ts ~ TK \rightarrow absorption signal

•z ~ 20 to 30: Density drops Ts~ T $\gamma \rightarrow$ No signal

partially ionized -> emission

•z < 6: IGM fully ionized

Furlanetto et al. 2006

Semi-analytical models

300x300Mpc, Brightness temperature of 21cm line

0.3 0.25 0.2 0.2 z=14 0.15 Z=12 0.1 0 0.1 -0.1 0.05 -0.2 0 -0.3 -0.05 0.18 0.25 0.16 0.2 0.14 0.12 Z=8 0.15 0.1 z=10 0.08 0.1 0.06 0.04 0.05 0.02 0

SIMFAST, Santos et al 2010

Variations due to SF, Lyα coupling (WF), X-ray heating...

Grand - 2015

Simulations of radiative transfer

Baek et al 2009, 2010

Many simulations assume a very efficient coupling either from collisions, or from Ly α photons, through the Wouthuysen-Field mechanism $\rightarrow T_s = T_k$

To compute the 21 cm signal:

LICORICE:

a unique, validated code

(Semelin & Combes 2002, Semelin et al 2007, Iliev et al. 2009, Baek et al. 2010)

HI 21cm tomography

Power spectrum

McQuinn + 06

Anisotropy detectable?

Anisotropy Space/time of the light cone Might be detectable with SKA Zawada, Semelin et al 2014

Different correlations along and perp los, when?
--overlap of ionized bubbles,
--the onset of mild heating by X-rays
--the onset of efficient Lymanα coupling

Predictions of maps at 21cm for 6<z<30: →Design of SKA

Light-cone effects

During overlap $\langle x_{HII} \rangle$ changes much in $\Delta z=1 \Leftrightarrow 200$ Mpc/h.

Large scale correlations will "detect" ionization history → anisotropy.

Zawada et al. 2014

Correlation function: parallel vs perpendicular

Theoretical toy model

Simulations: 400 Mpc/h box (512³ particles)

Relative V between DM and gas

- Tseliakhovich & Hirata 2010 vbc= V(baryons-CDM)
- Relative supersonic motion gas DM affects 10^4 - 10^8 M $_{\odot}$ halos •Limits halo abundance
- •Removes the gas No fbk, no vbc No fbk, vbc 300 \rightarrow Delays star formation by $\Delta z \sim 5$ Weak fbk 도 ¹⁰⁰ ⊢≚ Strong fbk Equivalent to feedback, or Saturated fbk to WDM 30 Fialkov et al 2013 10 15 20 25 1+z Grand - 2015 17

30

Rings in the 21cm signal

Concentric shells =Lyman horizons, that photons cannot overtake. Around UV sources, the Ly α flux shows discontinuities at Lyman-series

4

8

10

Visible in the 21cm signal

Vonlanthen et al 2011

Rings in the simulations

Coupling coefficient for Lyman- α excitation, x_{α} , at z=13.42 In red, a simulation showing the Lyman horizons, Ly- γ , Ly- δ , Ly- ϵ

Carilli 2004

z=3.6

Ionization Fraction

Simulation AMR RAMSES Transfer ATON (moments) GPU code 2 bands, UV, X

300 Mpc³ 2048³

z=10.4

z=7

Semelin et al 2015

Evolution of x_{HII}, T_{emp}

 $T_{0.1}$ is the average over regions of $x_{HII} < 0.1$ \Rightarrow Represents the HI regions temperature

While T_K is averaged over the whole simulation volume

Semelin et al 2015

Grand - 2015

Evolution of 21cm optical depth

Higher τ_{21cm} than previous results

Simulation $\varepsilon 1.2 \cdot \alpha 3$ de Ciardi et al 2013 Coupling Ts=Tk (green curve) Ts= max (Tk, results with Ly α +X) red

Semelin et al 2015

Ciardi et al 2013

23

Optical depth-density

Expected spectra

<\u03c0_{21cm}> ~ 0.05 at z=7.9, and ~0.001 at z=7

Conclusions

EoR is a privileged domain to test the universe history And cosmological models

Signals at 21cm are of several kinds:

- → Tb versus redshift (dark age, cosmic dawn, reionization epoch)
- \rightarrow 21cm tomography (2D planes)
- \rightarrow Power spectra (k) LSS
- → 21cm forest (small scale structure)
- → Stromgren sphere around powerful quasars