
FJPPL meeting on French BEAST/Belle II activity 19-20 January 2015 - IPHC Strasbourg




# What can be measured with PLUME?



#### Outline:

- What questions do we have?
- Detector configuration possibilities
- Occupancy rates
- Damping of the injection noise
- Sensitivity to synchrotron radiation
  - Angular measurements
- Very first look at background simulation
- Conclusion

I. Ripp-Baudot for the IPHC-PICSEL group support from Université de Strasbourg: Investissements d'avenir



#### What questions do we have?

- What beam conditions should we expect during BEAST phase 2?
   Beam parameters (current, luminosity, ...): inputs for simulations.
- Limits to operate PLUME:
  - What is the expected radiation load?
     Do we sustain it? Impact of injection noise and beam losses?
  - What is the expected occupancy rate during BEAST phase-2?
     Do we sustain it?
  - Injection noise: is it an issue? Does it saturate the read-out?
- What important measurements can be provided with PLUME:
  - Are we able to provide information about the injection noise damping?
  - Are we sensitive to synchrotron radiation background?
  - Is it possible to disentangle different background sources, e.g. beam-beam vs. single beam, synchrotron radiation:
    - \* thanks to PLUME angular resolution?
    - \* thanks to cluster (u,v) size?

## **Detector configuration possibilities**

- PLUME-2 equipped with MIMOSA-26 sensors:
  - \* integration time  $\sim 100 \ \mu s$
  - \* sensitive area with 2x 6 sensors: 2x 12x1 cm<sup>2</sup> (2x refers to both sides)
  - 8x10<sup>6</sup> pixels of dimension 18.4x18.4 μm<sup>2</sup>
- PLUME-3 equipped with ALICE-ITS type sensors, e.g. MISTRAL:
  - \* integration time 20  $\mu$ s
  - \* sensitive area with 2x 3 sensors:  $2x 9x1.3 \text{ cm}^2$  (if placed at r ~ 1.4 cm)
  - 5.2x10<sup>5</sup> pixels of dimension 36x62.5 μm<sup>2</sup>
- Also to be figured out:
  - What radius should be considered?
  - \* 2 ladders: either from same PLUME type, or one PLUME-2 and one PLUME-3.
  - $\ast\,$  PLUME-3: can be operated with full sensitive area & and integration time 20  $\mu s$ 
    - or: do not read all lines of pixels → integration time 2 µs but sensitive area only 2x 9x0.16 cm<sup>2</sup>
- Constrains on the final design:
  - Integration aspects.
  - \* What inputs are mandatory to safely operate the PXD in Belle II w.r.t. what will be already measured with other devices in the inner tracker volume?
  - Provide also inputs to the design of a future upgraded VXD (+beam pipe)?

#### **Back-of-the-envelope occupancy rate estimation (1)**

#### Luminosity Initial target (example)

|                         | SuperKEKB Design                                      |        | SuperKEKB Initial Target (example)                    |        |
|-------------------------|-------------------------------------------------------|--------|-------------------------------------------------------|--------|
|                         | LER                                                   | HER    | LER                                                   | HER    |
| Luminosity              | 8 x 10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> |        | 3 x 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |        |
| I <sub>beam</sub>       | 3.6A                                                  | 2.6A   | 0.51A                                                 | 0.37A  |
| ξ <sub>y</sub>          | 0.088                                                 | 0.081  | 0.040                                                 | 0.033  |
| $\beta_{y}^{*}$         | 0.27mm                                                | 0.30mm | 0.54mm                                                | 0.60mm |
| $\beta_x^*$             | 32mm                                                  | 25mm   | 62mm                                                  | 50mm   |
| ε <sub>x</sub>          | 3.2nm                                                 | 4.6nm  | 3.2nm                                                 | 4.6nm  |
| $\kappa$ (x-y coupling) | 0.27%                                                 | 0.28%  | 2.1%                                                  | 2.2%   |
| # of bunches            | 2500                                                  |        | 357                                                   |        |

Discussion : Beta function should be 1 order higher than design value

SuperKEKB Run 3 starting parameters: taken as BEAST-phase 2 parameters.

#### correction w.r.t. numbers from this table according to Nakayama-san yesterday. Therefore I did:

¥

To estimate BEAST-phase 2 occupancy rates, take Belle II background simulation results and apply:

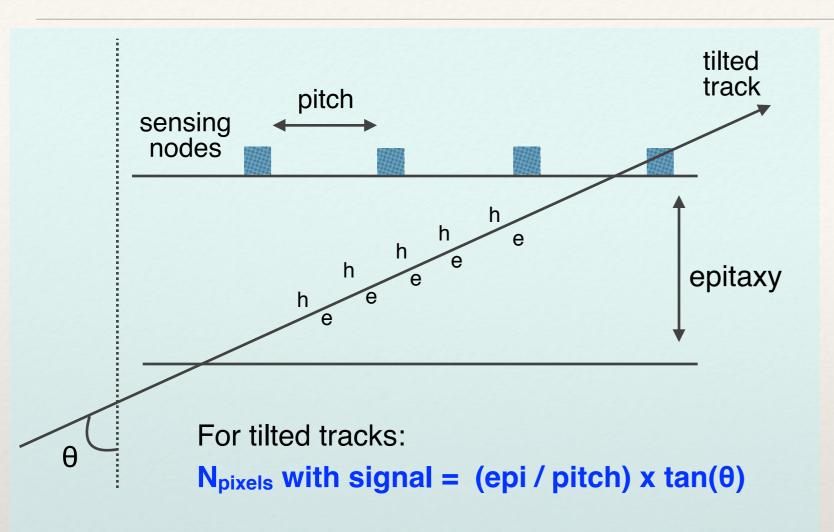
- single beam bkg /10 (not taken into account: detuned beams, worse vacuum)
- beam-beam bkg / 80

Very preliminary approach. Conditions during BEAST may be worse than during Belle II physics run, due to beam tuning and beam losses. ??

#### **Back-of-the-envelope occupancy rate estimation** (2)

- Furthermore, to translate DEPFET PXD occupancy rates to PLUME-2, also take into account: \*
  - Pixel surface: DEPFET 50x50  $\mu$ m<sup>2</sup> (r=1.4 cm) or 50x75  $\mu$ m<sup>2</sup> (r=2.2 cm) → MIMOSA-26 18.4x18.4 µm<sup>2</sup>.
  - Sensor integration time: DEPFET 20 μs
    - → MIMOSA-26 100 µs.
  - Cluster size: DEPFET ~1.3 pixels/hit ?? for perpendicular tracks •

how does it vary with track incidence?


how does it vary with track in MIMOSA-26 ~3 pixels/hit for perpendicular tracks

This is the main difficulty of this back-of-the-envelope calculation:

Background particles are mainly produced with non-perpendicular incidence and cluster sizes are actually due to:

- Sensitive node network rather than pixel dimension.
- Sensitive depth w.r.t. distance between sensitive nodes.
- Track polar angle and transverse momentum (curvature in the magnetic field).
- Conclusion: such a back-of-the-envelope calculation is only useful to make sure that PLUME can be operated efficiently and have a clue on what measurements may be interesting. A full simulation study is needed to go further.

#### **Cluster size and tilted tracks**



\* CMOS: epi / pitch = 15 / 18.4 = 0.8

→ increase of cluster size due to track tilt is larger in DEPFET than in PLUME.

 Conclusion: using the ratio MIMOSA-26 / DEPFET ~ 3 / 1.3 for cluster sizes which is ~ correct for perpendicular tracks (due to: DEPFET are depleted and pitch is larger) (as done in the back-of-the-envelope calculation) may predict slightly too high occupancy rate in PLUME.

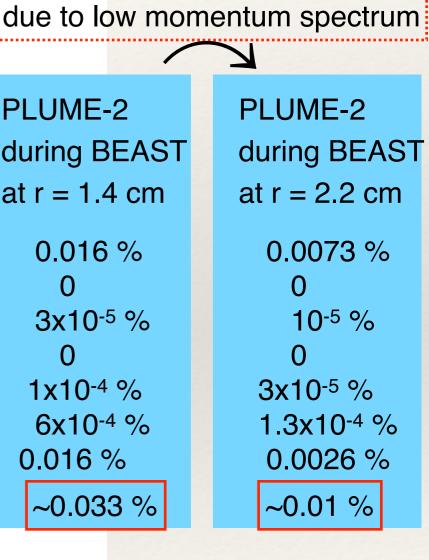
#### **Back-of-the-envelope occupancy rate estimation** (3)

**PXD** 

during Belle II

physics run

Layer 2


# BG sources and Radiation tolerance

- Radiation environment
  - 4-fermion final state QED process
  - Touschek effect
  - Beam-gas interactions
  - Synchrotron radiation
  - Radiative Bhabha scattering

#### Occupancy by each BG source: PXD case

| <b>,</b> . <b>,</b> |     |                      |                      |                      |
|---------------------|-----|----------------------|----------------------|----------------------|
| Touschek            | LER | 0.1 %                | 0.07 %               | 0.016 %              |
| Touschek            | HER | 0.0 %                | 0.0 %                | 0                    |
| Beam-Gas Coulomb    | LER | 2.10-4 %             | 1.10⁴ %              | 3x10 <sup>-5</sup> % |
| Beam-Gas Coulomb    | HER | 0.0 %                | 0.0 %                | 0                    |
| Radiative Bhabha    | LER | 5·10 <sup>-3</sup> % | 2·10 <sup>-3</sup> % | 1x10 <sup>-4</sup> % |
| Radiative Bhabha    | HER | 0.03 %               | 0.01 %               | 6x10 <sup>-4</sup> % |
| Two-Photon QED      |     | 0.8 %                | 0.2 %                | 0.016 %              |
| ~Total              |     | 0.9 %                | 0.3 %                | ~0.033 %             |

Layer 1



1.04172

hit rate decreases  $>> 1/r^2$ 

Synchrotron radiation(very preliminary): 0.14 % (one ladder in horizontal plane: ~1.8%)

Still under investigation

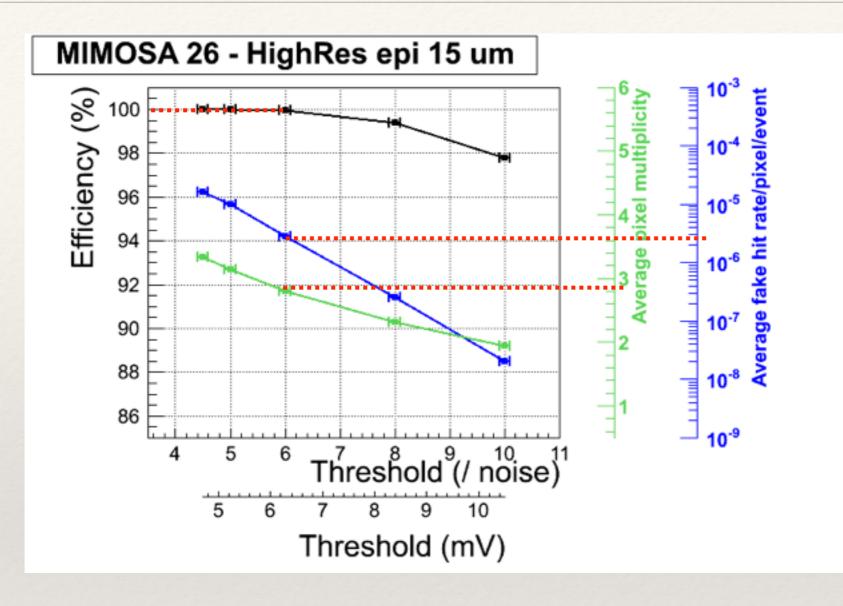
→ Beam-pipe Au coating is different in **BEAST** 

PLUME-2

during **BEAST** 

at r = 1.4 cm

#### **Conclusion about hit rates and occupancy rates**

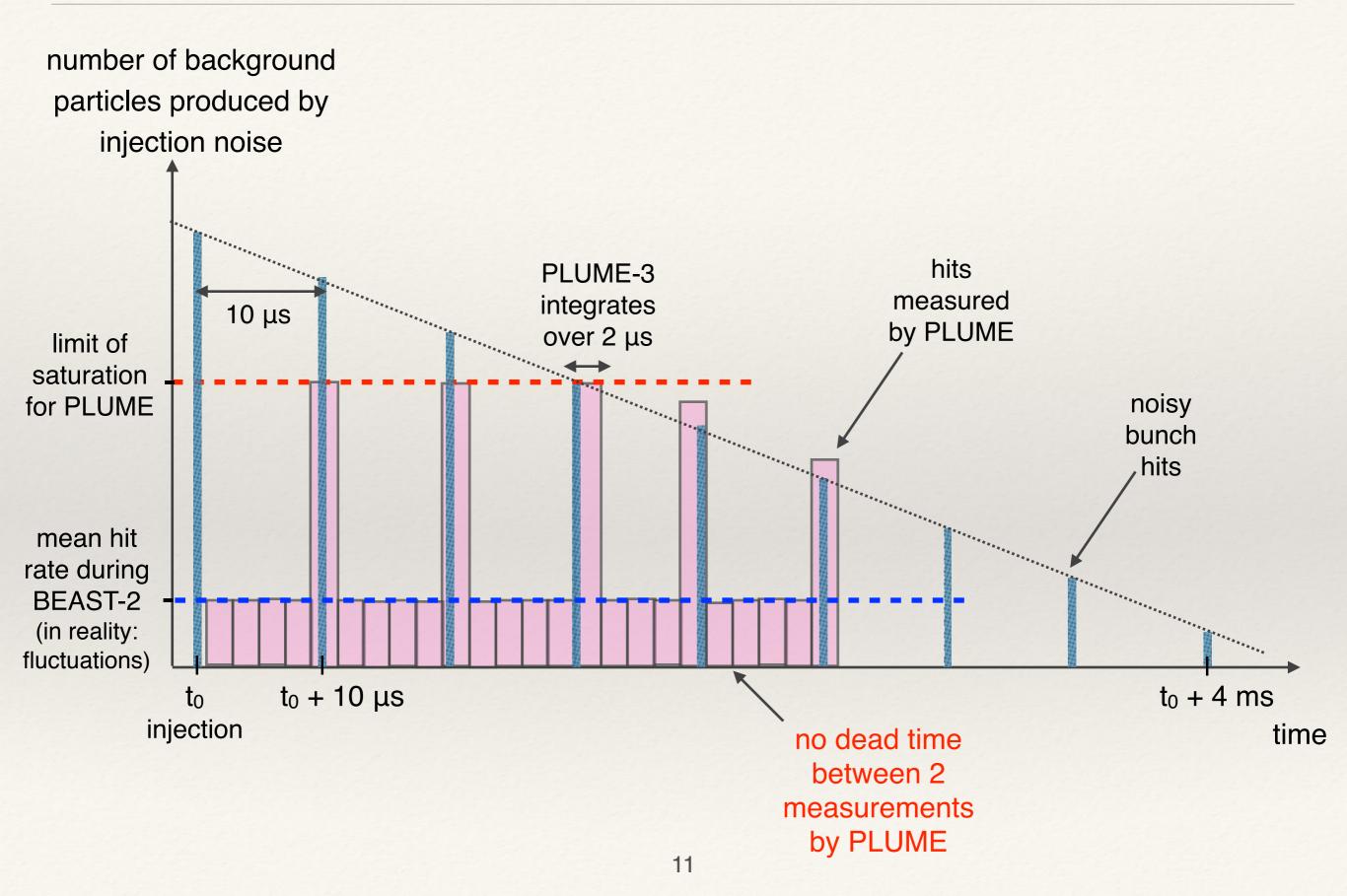

- MIMOSA-26 read-out capability ~ few 10<sup>6</sup> cm<sup>-2</sup> s<sup>-1</sup> i.e. ~ few 200 hits /sensor / frame few means here: function of the track incidence (cluster size)
  - ➤ read-out capability ~ few 400 pixels / sensor / frame

#### ≿ 0.1 %

because: 1 sensor = 2x1 cm<sup>2</sup> read out in 100 µs (= 1 frame) 1 hit ~ 2 pixels and  $6x10^5$  pixels /sensor

- ✤ Digital read-out of MIMOSA-26 → threshold can be changed:
  - Decrease threshold to increase cluster size if bkg hit rate is too low w.r.t. fake rate.
  - Increase threshold to decrease cluster size
     if bkg hit rate is too high w.r.t. read-out capability.
    - → see next slide.
- Fake rate is due to noisy pixels, which are known: these noisy pixels can be killed to lower the fake rate.
  - ➤ Conclusion on expected occupancy rate:
    - Hit rate at r = 1.4 cm during BEAST can be easily sustained by PLUME.
    - Attention: if r is too large, occupancy rate may reach the fake level because of the very high granularity of M26.

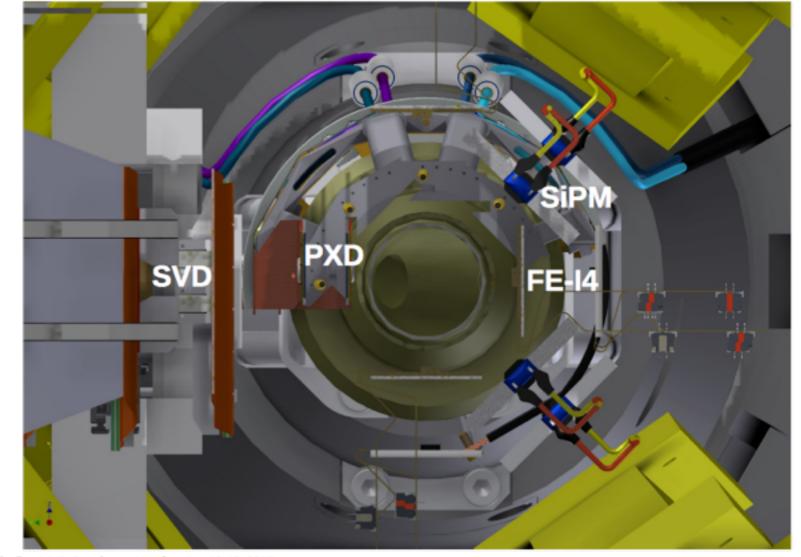
#### **Cluster size vs. threshold**




- Possible threshold = 6 x noise:
  - cluster size ~ 3 pixels /hit
  - \* fake rate  $10^{-6}$ - $10^{-5}$  /pixel with  $\varepsilon = 100 \%$  before ionising irradiation.

## Damping of the injection noise (1)

- DEPFET (integration time 20 µs) are impacted (saturation) by injection noise. They are operated in gated mode in order to be blind to this noise. This results in a dead time which must be minimised.
  - ➤ a time-accurate measurement of the injection noise is needed: proposition to measure it with FE-I4 ATLAS chips (50x250 µm<sup>2</sup>) with time resolution of 25 ns and also plastic scintillators (2x2 cm) +SiPM (ultra-fast: 800 ps sampling time).
- Integration time of 2 μs from PLUME-3 is not accurate enough to fine tune the DEPFET veto window with the desired time resolution.
- But still, PLUME-3 with integration time of ~2 μs seems able to measure the Damping slope, i.e. hit rate vs. time (see next slide).


#### **Damping of the injection noise (2)**



### **Correlate PLUME with Si-PM**

- Correlate PLUME and SiPM measurements to take advantage of SiPM good time resolution & of PLUME good spatial resolution?
  - Proposed by Munich.
  - Where can we put PLUME?
- PLUME in front of SiPM:
   Does PLUME degrade SiPM measurement of X-rays?
- PLUME behind SiPM: High radius: very low counting rate in 18.7x18.7 µm<sup>2</sup> pixels.

#### VXD Equipment during Phase 2



C. Kiesling, VXD-Strasbourg Meet

From: C. Kiesling - VXD-PLUME meeting - Jan. 12-13, 2015

## **Sensitivity of PLUME to X-Rays (1)**

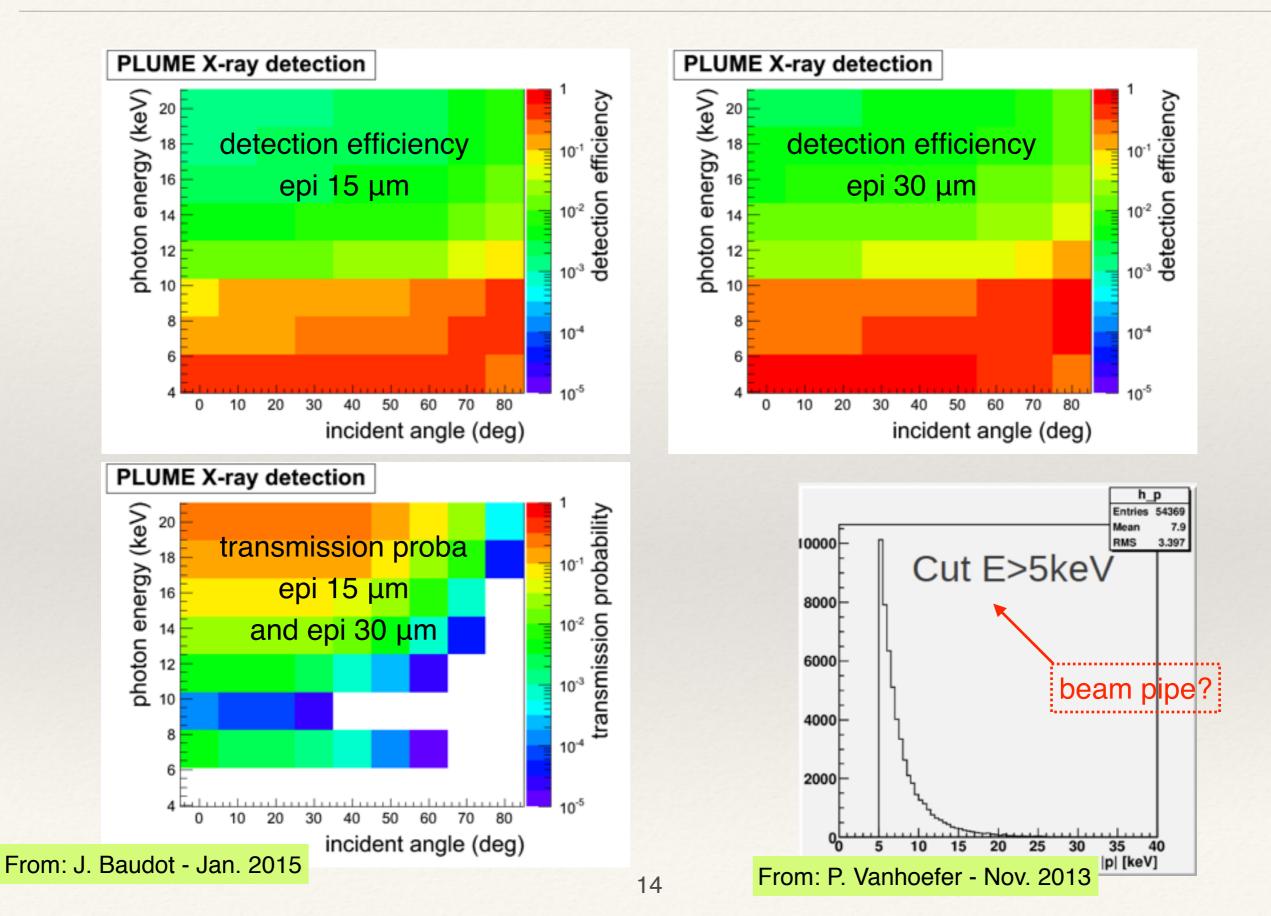
\* PLUME epitaxy is very thin: MIMOSA-26 (PLUME-2) epi =15  $\mu$ m MISTRAL (PLUME-3) epi = 30  $\mu$ m

how much is PLUME transparent / sensitive to X-Rays?

 Calculate attenuation of X-Rays in PLUME with Beer-Lambert exp(-μ·d). (study from J. Baudot - Jan. 2015).

 BUDDI 21
 silicon (µelec componants)
 5 µm

 silicon (epitaxy)
 15 - 30 µm


 silicon (bulk)
 35 - 20 µm

 copper (cable)
 20 µm

 silicon carbide 4 % (foam)
 2 mm

 idem as the other side of PLUME
 10 µm

#### Sensitivity of PLUME to X-rays (2)



## **Sensitivity of PLUME to X-Rays (3)**

- Detection efficiency:
  - X-rays with E < 10 keV are detected in PLUME with efficiency decreasing from ~100 % to ~ (few) 10 % with increasing E.
  - PLUME becomes transparent to X-Rays with E > 10 keV, i.e. they don't increase the occupancy rate.
- Transmission probability:
  - Transmission ≠ 1 detection efficiency: mainly absorption in 20 µm Cu (not a sensitive volume).
  - That's why: no significative difference if 15 or 30 μm of epitaxy.
  - PLUME is not transparent to X-Rays, in particular if E < 15 keV.</li>
  - Use an AI cable to build PLUME instead of a Cu cable would help being more transparent.

#### **Track incidence angular measurement**

- \* Angular resolution was measured with high E  $\pi$ <sup>±</sup> beam at CERN-SPS:
  - $\sigma = 0.11 + 0.01^{\circ}$  with perpendicular tracks
  - $\sigma = 0.2 \pm 0.01^{\circ}$  if track incidence of 40 °.
  - ➤ Could we use this accuracy to provide information on background particle origin?
    - Is it useful while the detector is reached mainly by secondaries?
- Due to low momentum spectrum of background particles
  - + angular large incidence of track arriving on the sensor:
  - ➤ cluster association between both sides of PLUME may be tough.

see next slide.

#### (ILC study) Extrapolation vs incident angle another track Area to look for Where to look for clusters in 2<sup>nd</sup> closest layer? Gluster Layer 2 What $\theta$ angle to chose to define the search area ? Depending on the acceptance gap the Number of pixels can be huge (2mm) Layer 1 N pixels N pixels = $\pi$ (gap x tan( $\theta$ ) / pitch)<sup>2</sup> considered Assumed gap = 2mm cluster 10<sup>6</sup> Assumed pitch = 20 $\mu$ m θ Possible fake rate level 105 Inside ~ few degrees There will be some hits 104 coming from beam background 10<sup>3</sup> Probability that the closest Possible occupancy level cluster on the 2<sup>nd</sup> layer comes 10<sup>2</sup> ~200 pixels from another track seems in PLUME-2 10 at r=1.4 cm high. $\theta$ (deg) 1 1 1 1 1 1 80 70 10 20 30 50 60 40 Aυ

From: A. Besson for ILC - June 2014

#### **Track incidence angular measurement**

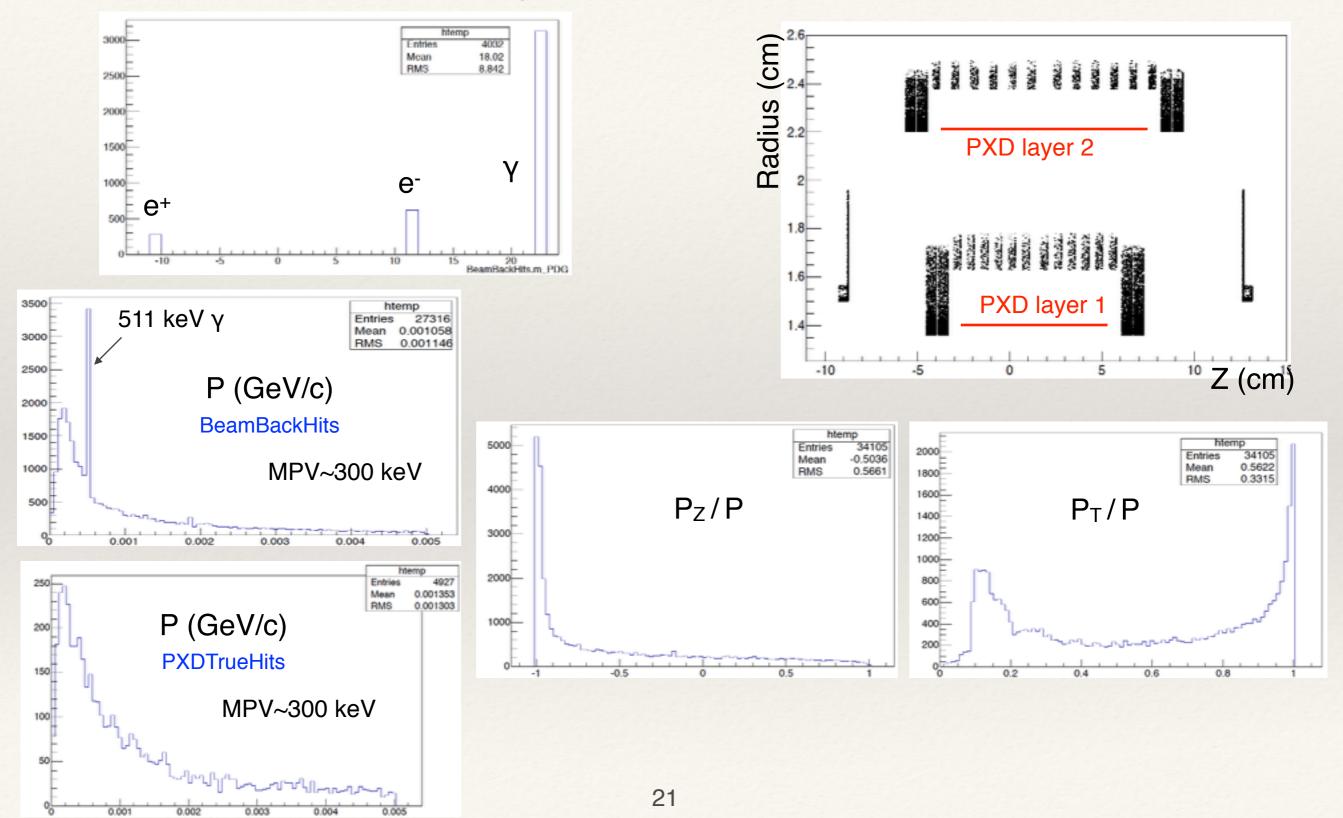
- \* Angular resolution was measured with high E  $\pi$ <sup>±</sup> beam at CERN-SPS:
  - $\sigma = 0.11 + 0.01^{\circ}$  with perpendicular tracks
  - $\sigma = 0.2 \pm 0.01^{\circ}$  if track incidence of 40 °.
  - ➤ Could we use this accuracy to provide information on background particle origin?
    - Is it useful? (only secondaries reach the detector)
- Due to low momentum spectrum of background particles
  - + angular large incidence of track arriving on the sensor:
  - cluster association between both sides of PLUME may be tough.

see next slide.

- Conclusion:
  - Try to build PLUME with reduced thickness (gap).
    - → OK, possible to use foam with thickness 1 mm or even 500  $\mu$ m instead of 2 mm. Purity of association increases ~ 1 / gap<sup>2</sup>.
  - Acceptance issue if the sensitive area is reduced to accelerate integration time.
- To help defining the area where to look for the associated cluster: possible use of cluster size increase along u-direction or v-direction. (cf. study by A. Besson for ILC)
   Only possible with small pitch, e.g. 18.4x18.4 μm<sup>2</sup>, to insure >> 1 cluster size.

#### **Background simulation studies (1)**

\* Simulation studies of SuperKEKB induced background during Belle II physics run:


- Inputs from Onishi-san (SuperKEKB) → Nakayama-san (Belle II).
   Rootuples from the 10th campaign (nov. 2014):
   /home/belle/nakayama/fs2/BGdata/10th\_fullsim/EvtbyEvt
- Final merged rootuples corresponding to: integration time = 1 ms
- \* Belle II detector geometry
- Touschek, Beam Gas (Coulomb) and Radiative Bhabha
- In addition to that, other background sources impacting only & particularly VXD, produced and studied in the frame of the physics run:
  - \* 2-photons QED pairs by M. Ritter (MPI Munich).
  - Synchrotron radiation bkg by Y. Soloviev (DESY).

### **Background simulation studies (2)**

- \* To do BEAST-phase 2 simulation studies:
  - need input files provided by Onishi-san and Nakayama-san for Touschek, Coulomb and RBB (produced with correct beam conditions).
  - \* what about 2-photons QED & Synchr. rad.?
  - \* set the PLUME integration time = 100  $\mu$ s (easy in RunSadByMC.py)
  - ♦ create PLUME geometry: /beast/plume/data/\*.xml
     ▶ OK.
- Preliminary possible study: look at Belle II-physics run simulations to figure out what will happen in BEAST
  - SuperKEKB lattice is the same.
  - Beam-pipe Au coating is only 6.6 μm in BEAST (w.r.t. possibly 10 μm during run 3): impact mainly synchrotron rad.?
  - Bkg angular distribution + energy spectrum should be OK?
- Information provided in rootuples:
  - MCParticles: production and decay point, daughters, mother, PDG id, momentum, + relation to PXDTrueHits and PXDTrueHits.
  - \* PXDTrueHits: sensor id, momentum, position, energy deposit.
  - BeamBackHits: ?? detector id, PDG id, momentum, position, energy deposit, …

#### **Very first look at Touschek LER**

BeamBackHits in PXD during 1 ms



# Conclusion

- \* At first sight PLUME can be operated safely in BEAST phase 2.
  - \* PLUME-2 integration time is ~100  $\mu$ s.
  - PLUME-3 can be operated with integration time of 2 μs or 20 μs (with possible switch between both). Reduced integration time of 2 μs is obtained thanks to a reduced sensitive area (therefore cluster association is not possible anymore).
- What measurements are considered:
  - \* Hit rate.
  - Track incidence: association of clusters measured on both sides of PLUME-2 may be possible to take advantage of its good angular resolution.
     Cluster increase along u or v direction may help.
     Obviously, to build the new PLUME-2: the thinner the better.
  - Synchrotron radiation: PLUME is actually not transparent to X-Rays. We have to check how much it would help to use an AI cable instead of Cu.
- As for other detectors, better knowledge of what beam conditions can be expected and full simulation inputs are needed to make final conclusion.

# back-up material