

Integration of PLUME in BEAST phase 2

Outline:

- 1. Plume ladder overview
- 2. Mechanical support in the IP region
- 3. Cooling
- 4. Readout system
- 5. Tentative schedule
- 6. Summary

Michal Szelezniak for the IPHC-PICSEL group FJPPL meeting, Strasbourg, 19-20 January 2015

PLUME

R&D project inspired by ILC-VXD requirements

50 μm thick sensors

- Double-sided layer of pixelated sensors
- Low radiation length $(\sim 0.35 \% X_0)$
- Air cooled (≤ 5 m/s @ room temperature)

	Current baseline (PLUME-2)	Possible upgrade (PLUME-3)
Sensor	Mimosa26	Mistral
Pixel [μm²]	18.4 × 18.4	36 × 62.5
Array [pixels]	1152 × 576	832 × 208
Integration time [µs]	112 (62 for 320 rows)	20 (~2 for 26 rows)

Mechanical and electrical integration very similar in both cases

Installation considerations

- Basic assumptions:
 - We are joining this project late, therefore we try to adopt our system to the existing framework
 - Reuse existing solutions
 - Avoid interference with existing systems
- Installation options:
 - Our initial goal has been to install the PLUME ladder in the IP region at the radius of the most inner detection layer (initial goal: 1.5 - 2 cm)
 - Currently we are in discussions with the DEPFET team on how to optimizing the location of the PLUME ladder in the IP region (or possibly outside)
- Detector configuration
 - Baseline: one PLUME ladder
 - Possible extensions: additional ladder, individual sensors
 - should be defined as soon as possible to estimate advantages vs effort

GEMBA meeting November 2014

 Very helpful to understand system integration constraints and make development plans accordingly

PXD 1-st layer

Dock space

015

Mechanical support in the IP area

Initial plan:

- Two supporting pieces
- Ladder at R ≈ 2cm (adjustable by modifying the support fixtures)
- Installation and shipping requires an additional, detachable handle

Mechanical support in the IP area

Alternative locations

Proposal by the VXD group (VXD-Strasbourg Meeting, Jan 12-13, 2015)

PLUME associated with SiPM?

In front of SiPM $(R\sim2 \text{ cm ?})$

Behind SiPM (R~3-4 cm ?)

Additional cooling constraints

Cooling

PLUME-1/2/3: power diss. < 9 W

- In the IP region
 - We would rely on the PXD air flow cooling
 - Possibility to simply attach ladder support to PXD cooling blocks and benefit from heat transfer
 - (efficiency of this cooling would have to be investigated)
 - Possibility to adjust PLUME ladder consumption by deactivating some sensors
 - Limited manpower for cooling system optimization
 - VXD CO₂ cooling no manpower for investigating this option

Readout path - overview

 Our layout tries to imitate the VXD readout path to simplify system integration

To data storage

Readout path

Existing intermediate board:

Designed for lab and beam tests

- New intermediate board needs to be designed and built:
 - Remote monitoring of current/voltage
 - Ladder temperature measurements
 - Latch-up protected power supply for PLUME
 - Adjustable power supply voltage

Readout system

- IPHC system based on NI crate
- Operated in many beam tests since 2008
- Used with 8 sensors in parallel
- Supports 16 Mimosa26 sensors

Readout system functionality

- Slow controls:
 - sensor configuration
 - I/V + temperature monitoring (new features)
- Data readout and analysis:
 - IPHC offline code exists
 - Could be run as pseudo-online
 - Will be developed to match requirements provided by beam environment simulations
- Further integration with BEAST phase-2 systems to be discussed

Integration in racks

- Rack space still needs to be defined:
- NI PXI crate ~ 4U
- Double power supply
 - bench top or rack mount
- Data storage where?, size (≤ 2U)
- Network power switch for remote power control (1U)

Tentative schedule

- Additional ladder production ends Q2 2015
- Test full readout chain Q3 2015
- Build and test new intermediate board Q3-Q4 2015
- DAQ/slow controls/online Q4-2015 Q2-2016
- Ready for installation in Fall 2016
- PLUME-3 readiness depends on ALICE ITS schedule and our workload
 - Sensors available Q4 2015
 - Modifications in the readout system (driven by ALICE development) Q1 2016
 - Possibility to modify foam beam dimensions (for example to facilitate installation at a larger radius)
 - Most likely ready by the end of 2016/early 2017

Summary

- PLUME-2 ladder (M26) production on-going
- Readout system exists but needs testing in the full readout chain configuration (adapter boards, full length cables)
- Mechanical support undefined at this point will depend on the final location of the PLUME ladder
- Cooling PLUME to be integrated into VXD cooling system
- Additional PLUME system extension can be considered based on beam background simulation results and availability of manpower
- PLUME-3-based system strongly coupled to ALICE ITS upgrade development – could be ready by the end of 2016