Fast luminosity measurements by ZDLM of the counter type

S.Uehara(KEK)

For meetings at IPHC, Strasbourg

January, 2015

Luminosity measurement by ZDLM

Zero Degree Luminosity Monitor

detects the very-forward Radiative Bhabha events

$$e^+e^- \rightarrow e^+e^- \gamma$$

Each of the final-state particles goes to

0-degree for either of incident beams

(The photon is collinear with either of the incident e⁺ or e⁻,

even in lab. with the finite-angle crossing).

Cross section at $\sqrt{s} = M(Y(4S))$

$$\sigma = ^10^{-25} \text{ cm}^2 \text{ for } E_{\gamma} > 10 \text{MeV}$$

very high (sometimes too high) rate for L~10³⁵/cm²/s

rate ~10 GHz > bunch-collision rate (max. 0.509 GHz)

Where are the signals?

ZDLM@SuperKEKB/Belle II

(1) Analog integration or discrimination by threshold for Real-time measurement of luminosity for automatic feedback

High-rate (multiple-event) problem for simple counting against the intersecting rate

Integrate pulse size/shape (Capable to the higher rate)

- (2) High-precision timing measurement for
- bunch-by-bunch (every ~1s, with ∆t < 2ns separation)
 high-freq. vibration (every ~ 1ms) measurements
 as performed at Belle

Aiming a 100% duty factor and a quick online analysis

Detector

ZDLM for SuperKEKB of the counter type

LGSO non-organic scintillator

15x15x64(full length) cut with 45 deg at the two ends Scintillator is covered by an Al-foil

and ES-crystal (quartz)
Both no-color and fully transparent

Hamamatsu PMT H3165-11 (1/2")

for each

Scintillator vs Cherenkov

Cf. Diamond sensor type (LAL)

Scintillator:

Larger pulse size

better photon-quanta statistics

safer even in a weak magnetic field degrading PMT

Cherenkov:

Not sensitive to low-energy photon backgrounds rejection with the coincidence

Time resolution

Better at Cherenkov when its pulse size is large enough Better at Scintillator when Cherenkov's pulse size is small

LGSO Crystal Scintillator

- LGSO (similar to LSO) -- (Lu_xCe_yGd_{2-x-y}SiO₂) produced by Hitachi Chemical
- High density, high Z
- Large light yield
- Radiation hardness expected
- Not-bad timing response (decay is a little slow)
- Self radiation of Luthetium176

 $(2.59\%, \beta-decay, <1.2MeV, HL 37.8Gyr)$

■ Characteristics

Crystal scintillators	gso	gsoz	LGSO (Lu:20%)	LGSO	BGO	LSO	LaBr₃:Ce	NaI:TI
Density (g/cm 3)	6.71	6.71	6.5	7.3	7.13	7.4	5.29	3.67
Effective Z	58	58	59	63	72	65	47	50
Absorption Coeffi. at 511 kev	0.7	0.7	0.7	0.85	0.96	0.86	0.47	0.35
Decay constant (ns)	30 - 60	30 - 60	50,115	41	300	42	26	230
Light output (relative)	20	24	42	85 - 90	7 - 12	40 - 90	120-160	100
Energy Resolution (%)	9	9	8.5	8	10	8 - 10	3	7
Peak emission λ em (nm)	430	430	430,500	420	480	420	380	415
Index of refraction at λ em	1.85	1.85	1.85	1.83	2.15	1.82	1.88	1.85
Hygroscopicity	no	no	no	no	no	no	Strong	Strong
Melting point (deg.C)	1950	1950	1950	2050	1050	2100	783	651

*Data in this sheet are typical values, are not guaranteed value. From "Hitachi single crystal scintillators", Hitachi Chemical

Signals from LGSO

Slow decay time (variable in 40ns – 200 ns) observed

Seems to be dependent of the pulse size, perhaps due to the saturation of the PMT looking at strange pulse shape

Look cosmic rays with coincidence with Cherenkov

(Upper yellow: Cherenkov, Lower cyan: LGSO)

Signals/backgrounds from LGSO

Self irradiated by radio-Lutetium's beta rays --- decay time ~ 40ns

Timing measurement under a high rate (>1MHz) is impossible

The rising speed is reasonably good

Pulse size safely smaller than 0.5 penetrating mip
No problem for separation Provides a calibration
Our piece including 55g Lu -- 4.5kBq in calculation
about 2 kHz in measurement (with the lowest threshold setting)

Analog Electronics for Integration amplifier

Signal-to-noise ratio

$$S/N = \frac{S}{\sqrt{N+S}}$$
 for counting measurement
$$S/N = \frac{S}{\sqrt{(\Delta N)^2 + (1+\sigma^2)S}}$$
 for analog sum

S: total signal count, N: total noise count,

 ΔN : fluctuation of the noise size relative to the averaged single signal size

 σ^{2} : variance of the single signal size relative to the averaged single signal size

Measurement scheme

Circuit of the Shaper + Integration amp.

Functional test of the integration amp.

Should have a linearity for pulse-size integration with τ = 1ms. That is, be proportional to each of pulse height, pulse width and frequency.

Test Results (measured by an oscilloscope via an isolation amp.)

The lines are guide for eyes (not fit)

0.4NHZ of the counter type, S. Uehara KEK

Connection test to Lock-in Amp.

For dithering tuning (Tested by T.Kawamoto, M.Masuzawa, S.Uehara)

Time constant tentatively tuned at (300ms, 18dB) Response to

Access via EPICS developed

Emulated signals (50Hz,

77Hz sine-waves admixture)

Analog low-frequency pulses

Lock-in Amp.

Integ. Long cable

Slow signal (τ =1ms) High impedance input

A model of Lock-in Amp.

• Modulated Amplification Output(t) ~ Input(t)* $\cos(2\pi f_0 t + \phi)$ Two phases $\cos 2\pi f_0 t$ and $\sin 2\pi f_0 t$

Measuring signal size

 $C = \sum \cos 2\pi f_0 t_i$ t_i : time of each event

 $S = \sum \sin 2\pi f_0 t_i$ \sum : summation for

one measurement

Size: $\sqrt{C^2 + S^2}$, Phase = arctan(S/C)

Dithering frequency: f_0 =77Hz

doubled: f_0 =154Hz

TDC system for bunch-by-bunch luminosity measurement

VMETDC module for precise timing measurement

A VME module (6U)

A HP-TDC chip

Ethernet (Optical Gbit)
Communication

without use of VME bus

Developed by KEK-IPNS Electronics Group

HP-TDC

The sides about TDC are prepared by the KEK Electronics group (M.Shoji, M.Ikeno, T.Uchida, M. Tanaka, Translated by S.U).

- Specifications of TDC
 - HP-TDC chipdeveloped at CERN

Required performance for ZDLM				
Time resolution	500ps			
I/O I/F	9ch or more			
Average rate	Max. 5MHz			

External clock	40 MHz
Readout methods	parallel, serial or JTAG
Signal Input	Max 32ch
Signal level	LVDS or LVTTL
Power	
consumption	450~2000 mW
Resolution	781, 195, 98, 25 ps
Input Rate	Max 8MHz

Very High Resolution mode(Resolution: 25ps)
Use 8/32ch(ch# 0,4,8,12,16,20,24,28

Operation test of VMETDC

Test patterns of collision-bunch signals and the revolution signal

are generated by pulse generators

of DAC type controlled by PC

ELMOS AWG-100

10MHz - DAQ -- Online-histogramming achieved

10000 10010 10020 10030 10040 10050 10060 10070 10080 10090

Test pattern from the pulser --- 100 pulses every 1 beam-turn period (=10.061ms)

 \rightarrow 10MHz hits @VMETDC

Histogramming --- every 0.4M hit Such a histogram is produced every 40ms (25 histograms/sec)

Counting number of hits, 100% duty-factor is confirmed

2000

DAQ PC (Linux) Multi-task

Dual shared-memory buffer

1. DAQ \rightarrow 2. Histogramming (100%)

(ns)

→ 3. Display (sampling)

Cosmic-ray test for using CF discriminators

Timing Measurement by VMETDC in Cosmic-ray test

Time difference between two counters ZDLMs, Cherenkov and Plastic scintillator $\sigma = 0.98$ ns for 2 counters

Cherenkov and **LGSO** scintillator $\sigma = 1.31$ ns for 2 counters

Time resolution < 1 ns is achieved for one counter.

LGSO is worse than plastic, perhaps due to saturation of PMT

Operation at Phase I

Detects beam-nucleus Bremsstrahlung at the gamma position (HER) – Provide a calibration

$$e + A \rightarrow e + \gamma + A'$$
 (A: beam gas nucleus)

- The energy spectrum is the same as in the e⁺e⁻ collision signal.
- The timing structure directly corresponds to the bunch-by-bunch structure of the beam (because the beam electrons and radiated photons propagates the same distance in the same time, independently of the scattering point).

Commissioning Plan

```
~2015 Summer-fall --
Setup a ZDLM outside Belle II/BEAST II
```

2015 Phase I -Background (mainly beam-gass brems)
with ZDLM + BEAST II

2016 −
Fast luminosity monitoring → Accelerator tunings

Summary

Machine – detector interface through luminosity measurement at a luminosity-frontier machine

Instantaneous luminosity measurement and feedback using ZDLM scintillator and Cherenkov counters via an integration amplifier The basic function of the circuit confirmed.

Bunch-by-bunch luminosity measurement using high-precision TDC and constant-fraction discriminator

~1.0ns time resolution (per counter) is achieved for m.i.p. (cosmic-ray muon) is achieved.

Studies using Nuclear bremsstrahlung (under single-beam condition) is aimed

Backup

Full Story

Feedback on the accelerator with a fast luminosity measurement

Radiative Bhabha process

Zero-degree luminosity monitor

Dithering

Simulations

Detector R&D

Collaboration

(Belle II + ZDLM + BEAST II) + SuperKEKB + SLAC + LAL

with the Belle type

↑New and ↑Old

with two 13mmφ PMTs (Hamamatsu H3165-11)

Coincident signals of cosmic rays have been observed on oscilloscope

Test and data analyses

Linearity測定

The data are read-out from VMETDC. (analyzed by M.Shoji)

Readout Circuit at KEK

Counting rate -- proportional to Luminosity

```
~10<sup>35</sup> >O(1MHz) --- 1% stat. accuracy in 100Hz readout 
~10<sup>34</sup> >O(100kHz) --- 3% stat. accuracy in 100Hz readout 
Tune depends on Luminosity
```

Cf. Collision rate (2-bucket spacing) 250MHz

Charge amp (Makes slow change) → V/F conversion (1MHz max) for Feedback @ SuperKEKB

Analog input (with pulse overlaps) is also OK in this scheme Capable for >=2 events per bunch collision when we use analog sum

Central Orbits near IR

Expected ZDLM rate

- Funakoshi-san's simulation
 for the Recoil e- or e+
- The rate should be proportional to luminosity 10^{35} luminosity --- ~ O(1GHz/m/s)
- Effective detector length --- ~ 0.1m
- Efficiency --- 10% (conservative, may be more) (angular coverage and shower loss)

Expected Rate $--- 0.1 \text{mA/s} \rightarrow 10 \text{ MHz}$

```
LER 4 m point (upstream BLC1LP) ~ 2MHz @ 10<sup>35</sup>
9 m point (downstream BLC1LP) ~ 8MHz @ 10<sup>35</sup>
13 m point (downstream QKBLP) ~ 30MHz @ 10<sup>35</sup>
```

HER 11 m point (downstream BLC1RE) ~ 2MHz @ 10³⁵

Expected ZDLM acceptance

Spread from HER ~±30deg
 There may be efficiency loss

Larger counter:
robust for an orbit change
worse time resolution

Illustrating the dithering quantities

Assumption of simulation

- . Measure the rate of ZDLM during 1 sec (1 second for 1 measurement)
- Sampling rate = 1024 Hz (Counting rate every 0.977 ms)
- Dithering frequency at accelerator

$$f = 77$$
Hz Vibrate a certain tuning parameter $r \sim \sin 2\pi ft$

We assume the luminosity depends of this parameter with a Gaussian function:

$$L(t) \sim \text{Exp}[-(q+p\sin 2\pi ft)^2/2]$$

q: Shift of the operation point from the luminosity peak

p: Amplitude of the dithering

f: Dithering frequency (taken to be 77Hz, here)

Artificial vibration of luminosity

Simulations for p = 0.5, q = 0, 50kHz

Luminosity

Lock-in Amplifier

 $C = \sum \cos 2\pi f_0 t_i$

 $S = \sum \sin 2p f_0 t_i$

 t_i : time of each event

S: summation for

one measurement

 f_0 : Same as the dithering frequency and twice the frequency

Base freq.

Double freq.

Simulation

Dithering with a lock-in amp.

p= 0.5, Rate=50kHz, Measurement in 1 sec

Horizontal axis: $q = -1.5 \sim +1.5$,

Vertical axis: Size (arbitrary)

Base freq.

Pouble freq.

Simulation

p=0.2, Rate=400kHz

Simulation on the slope

Sqrt of the
Power Spectrum
Absolute value of the Fourier
coefficient

Simulation on the peak

p = 0.5, q = 0, 50 kHz

Simulation

p= 0.5, Rate=50kHz, Measurement in 1 sec

Horizontal axis: $q = -1.5 \sim +1.5$,

Vertical axis: Size (arbitrary)

42

Integrated to a NIM module

HV PS - attenuator-

VF converter – Integration amplifier

(left to right)

Basic operations are Confirmed.

TDC Module for precise timing measurement

FPGA

