Tracing the target material of cosmic-rays towards gamma-ray sources with molecular line Spectroscopy

Gamma-ray emission from SNRS

p-p interaction:

Inverse Compton Scattering:

Cosmic ray origin -theory

Protons are scattered by B-fields

Electrons lose energy via synchrotron quickly

Gamma-rays travel in straight lines

W28 Gamma-ray emission (and CO)

Good correlation between CO(1-0) emission and gamma-rays.

Suggestive of high energy protons (cosmic rays) interacting with gas.

Great evidence that W28 is a source of Cosmic rays!

There are some issues with this conclusion....

Fukui et al 2008

X-rays

OH E / OH F

Thermal X-rays (blue) are from high energy plasma

Seems to be at the cloud (green) boundary suggesting an interaction

CO Molecule

Nicholas et al 2012

CO(1-0) shown in green T~6 K

CO(3-2) shown in red T-30 K

SiO -A shock tracer

Yellow contours are SiO(1-0) emission

Nicholas et al 2012

CO vs SiO

Since the shared electrons 'spend more time' with the atom with the highest electronegativity, there is a charge difference between atoms, hence a molecular dipole moment, $\mu=\delta d$ (half the charge difference * distance between bonds)

Ie, ionic species ----> highest dipole moment, Molecular Nitrogen, N2----> Zero dipole moment

- CO
- Electric dipole moment ~ 0.12 D

- <u>SiO</u>
- Electric dipolemoment ~ 3.1 D

What effect does this difference in dipole moment have?

Cold, quiescent (star-less?) core

CO freeze-out

(eg. L1544, L1498, L1517B)

(Caselli et al., 1999, Tafalla et al., 2002, 2004)

Usually just a drop
 by a factor of few
 though.. Grain composition not well

Grain composition not well constrained...

contains:

Fayalite (Fe₂SiO₄) Fosterite (Mg₂SiO₄) Olivine (MgFeSiO₄) (Schilke et al., 1997) Total SiO freeze-out

(eg. TMC-1, L1551, L34N, B335)

(Ziurys, 1989)

Remember that SiO is heavier...

Slightly warmer gas (say... 20-40 K)

- CO abundant in gasphase.
- Prominent CO(1-0,2-1) emission
 (T~5.5,16.6 K, respectively)

SiO not very
 abundant in gas phase, still heavily
 depleted.

Hot Core (~100K)

- Higher-J CO transitions
- Increased (~10⁻⁸-10⁻⁷) SiO abundance observed in starformation regions (~90K)
 Orion and NGC 7538 (Ziurys, 1989)
- Consistent with Si-release from grains and endothermic reactions:

$$Si + O2 > SiO + \sim$$

$$Si + OH > SiO + \sim$$

with energy barrier of 111K (Langer & Glassgold, 1990)

Shocked Core

- SiO released from grainsurface or Si released.
- Dust-dust and dust-gas collisions may release Si from grains (Gusdorf et al., 2008a/b, May et al., 2000)
- Dust-gas collisions may release whole SiO molecules from the outer mantle of dust grains (Schilke et al., 1997)
- Dust grains destroyed by X-ray emission (Martin-Pintado et al., 1999)

Mopra radio telescope, Australia

- CS(1-0)

■ CO(1-0)

H alpha lines

• NH3(1,1)

- CH3OH(7-6)
- + more

• SiO(1-0)

HC3N

SiO -A shock tracer

Yellow contours are SiO(1-0) emission

Nicholas et al 2012

OH masers

- Shocks drive dissociation of H₂O molecules into OH
- And collisionally excite OH

Seen towards SNRs: w28,
 IC443, CTB37A, W51, Sag
 A east, + more..

Fig. 1. Schematic of an expanding supernova remnant (SNR) interacting with an adjacent molecular cloud. Black arrows indicate velocity.

OH masers

White crosses: OH masers

Future work

Specifically for W28:

Maxted et al, in prep.

Generally:

- Scrutinise the entire population of gamma-ray supernova remnants.
- Calculate upper limits for SiO and OH maser emission towards SNRs with nondetections.
- Investigate the relation between SNR age and molecular emissions.

Summary

A supernova remnant is seen in radio continuum and X-rays.

A molecular cloud traced is by CO(1-0) emission.

Shocked gas is indicated by OH masers and SiO(1-0) emission.

Shock heating of gas is seen by CO(3-2) emission.

A generally good correspondence between gas and gamma-ray emission is observed, suggesting emission from p-p interactions.

W28 is a cosmic ray source?

Thank you

Back-up Slides

Gamma-ray spectra

Figure 1.6: Two Spectral Energy Distributions (SEDs) taken from Abdo et al. (2011). Images include HESS and Fermi gamma-ray data points. The top image includes hadron-dominated SED models (authors indicated) predicted from HESS data, whereas the the bottom image includes lepton-dominated SED models (authors indicated) predicted from HESS data. The modeled SEDs pre-date the Fermi data-points, so may be considered predictions for the level of gamma-ray emission in the ~1-100 GeV range.

When do our molecules emit?

- Things to consider:
 - The chemistry of the environment. How does molecular abundance vary?
 - What is the phase of the molecule?
 - Will the molecule become excited?
 - Will the molecule de-excite RADIATIVELY?

OH

The former case of a non-dissociative shock propagating through high density material $(10^4-10^5\,\mathrm{cm}^{-3})$ is considered to be particularly promising (Frail et al., 1998). This involves a high-temperature ($\sim 1\,000\,\mathrm{K}$) post-shock region that produces a significant column density of OH (Draine et al., 1983). As the gas cools (to $\sim 400\,\mathrm{K}$) OH is converted into H₂O, but the high OH column density can be maintained if conditions are right for the simultaneous destruction of H₂O molecules, possibly caused by X-ray emission from the inner SNR region (Wardle et al., 1998, 1999). This would allow for a population of OH molecules to be kept at a temperature of 100-200 K in the post-shock region.

1720 MHz OH masers are expected to be most intense perpendicular to the direction of the shock-motion because the column density of the shock-excited, population-inverted OH molecules is largest here, while the velocity-dispersion of the emitters is smallest. It follows that the line-of-sight velocity of these masers generally represent the systemic velocity of gas associated with the object that injected the shock.

Maxted et al 2013

CO vs SiO

- <u>CO</u>
- Low electric dipole moment
- Critical density for emission
 ~1.10³ cm⁻³
- High abundance everywhere except cold, starless cores.
- Good general H2 tracer

- <u>SiO</u>
- High electric dipole moment
- Critical density for emission
 ~6.10⁴ cm⁻³
- Si and SiO released from dust grains in energetic environments
- Si is manufactured into SiO at high (~100K) temperatures

2 Excited Molecules

• Some amount of time will pass before these 2 different molecules in the J=1 state will decay.

How much time??

Einstein A-coefficient from state i to j for linear molecule

$$A_{ij} = \frac{64\pi^4}{3c^3} \frac{\nu_{ij}^3}{h} |\mu|^2$$

Dipole moment

Frequency

- Describes the rate (/s) of decay.
- Spontaneous decay rate proportional to (frequency)^3 and (Dipole moment)^2

CO(J=1-0) vs SiO(J=1-0)

- CO(J=1-0)
- Electric dipole moment ~ 0.12 D
- Frequency ~115 Ghz

- SiO(J=1-0)
- Electric dipole moment ~ 3.1 D
- Frequency ~43 Ghz

•
$$A_{10} \alpha v^3 \mu^2$$

 $A_{10} \sim 7.45 * 10^{-8} / s$

•
$$A_{10} \alpha v^3 \mu^2$$

 $A_{10} \sim 3.05 \times 10^{-6} / s$

Therefore, SiO(J=1) decays (with emission) ~40 times faster than CO(J=1).

$$A_{ij} = \frac{64\pi^4}{3c^3} \frac{\nu_{ij}^3}{h} |\mu|^2$$

Collisions

- Once a molecule is collisionally excited (let's ignore radiation...), spontaneous decay (A₁₀) must compete with collisional de-excitation (C₁₀).
- Note that if the kinetic temperature is larger than the transition energy (~5 K, usually is), C₀₁ is generally comparable, but larger than C₁₀
- Define a point where spontaneous decay is as likely as collisional de-excitation,
 - A ~ C, Or A/C ~1

•
$$C_{10} = k_{10}(T) \cdot nH$$

(/s) (cm³/s) (cm⁻³)

Collisions

• So at the point where $A_{10} \sim C_{10}$,

$$A_{10}/C_{10} \sim 1$$

$$A_{10} / (k_{10} n_H) \sim 1$$

Rearrange to get the 'Critical density'

$$n_{\rm H} \sim A_{10} / k_{10}$$

where $k \sim \sigma v$, v is M-Boltzmann, $v \sim sqrt(2kT/m)$

CO(J=1-0) vs SiO(J=1-0)

- CO(J=1-0)
 - $A_{10} \sim 7.45 * 10^{-8} / s$
- $k_{10} = \sigma v =$ $\sigma.sqrt(2kT/m)$
 - $k_{10} \sim 5.10^{-11} \text{ cm}^3/\text{s}$
- Critical density

- SiO(J=1-0)
 - $A_{10} \sim 3.05 * 10^{-6} / s$
 - $\overline{k_{10}} \sim 5.10^{-11} \text{ cm}^3/\text{s}$

- Critical density
 - $\sim 6.10^4 \text{ cm}^{-3}$
- ~1.10³ cm⁻³herefore, all else being equal, CO(1-0) emission is characteristic of smaller density than SiO(1-0) emission (in thermal cases, at least)

What about abundance?

- C is ~7 times more abundant than Si, but this certainly doesn't mean [CO]/[SiO]~7
- $[CO]/[H_2]\sim 10^{-5}$, $[SiO]/[H_2]\sim 10^{-12}$ 10^{-7} ...?
- We don't just care about abundance, but we care about GAS-PHASE abundance

