

IceCube & ANTARES

Constraints to the IceCube signal from ANTARES

8

Combined Point Source Analysis IceCube/ANTARES

J. Brunner CPPM 20/01/2015

IC79+IC86 v UHE Search

2 events observed in the PeV energy region in IC 86 sample

Ernie GMT: 2012/1/3 9:34:01

Bert GMT: 2012/8/8 12:23:18

2.8 σ beyond conventional background Phys. Rev. Lett. 111, 021103 (2013)

Follow up analysis

2 yr : May 2010 - May 2012 (662 days)

- Explicit contained search at high energies (cut: Q_{tot}>6000)
- ▶ 400 Mton effective fiducial mass
- ▶ Use atmospheric muon veto
- Sensitive to all flavors in region above 60TeV
- ▶ Three times as sensitive at 1 PeV
- ▶ Estimate background from data

High Energy Starting Events (HESE)

IC-HESE vs. ANTARES A_{eff}

- IceCube → 4π, high energy sample (E_ν>30 TeV), almost background free
- ANTARES $\rightarrow \nu_{\mu}$ only, Southern sky only
- $A_{eff}^{ANTARES} > A_{eff}^{HESE}$ at E_v < 60 TeV

Follow up analysis: the IceCube signal

2 year analysis: 28 events 4.1σ (Science 342, 2013)

3 year analysis: 37 events 5.7σ (PRL, 113, 101101, 2014)

track-like events

1º angular resolution muon takes some energy away total expected background: 11 events

21 === 28 cascade-like events

10° - 45° angular resolution 15% visible energy reconstruction

Best fit (per flavor):

 $0.95 \pm 0.3 \times 10^{-8} E^{-2} GeV cm^{-2} s^{-1} sr^{-1}$

highest energy event @ 2 PeV cutoff at ~2.3 PeV?

A source near the Galactic Center?

ANTARES has upper

THE ASTROPHYSICAL JOURNAL LETTERS, 786:L5 (5pp), 2014 May 1

For different energy spectra $E^{-\Gamma}$: (similar method using the A_{eff})

$\Gamma =$	$\Phi_0^{A,\Gamma} \; (\text{GeV cm}^{-2} \; \text{s}^{-1})$
2.0	4.0×10^{-8}
2.1	1.2×10^{-7}
2.2	3.2×10^{-7}
2.3	8.4×10^{-7}
2.4	2.2×10^{-6}
2.5	5.5×10^{-6}

$$E^2 \Phi^{A,2.0} \equiv \Phi_0^{A,2.0} \simeq 4.0 \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1}, \text{ point-like}$$

$$\simeq 5.0 \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1}$$
, for 0.5°

$$\simeq$$
 6.5 \times 10⁻⁸ GeV cm⁻²s⁻¹ , for 1°

$$\simeq 10 \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1}$$
, for 3°

Results

$$\Phi_0^{p,\Gamma} = 4\pi \cdot \left(\frac{n_p}{N_{IC}}\right) \cdot \Phi_0^{D,\Gamma}$$

		ANTARES				
		90% C.L.				
$\Gamma =$	$n_p = 1$	$n_p = 2$	$n_p = 3$	$n_p = 4$	$n_p = 5$	upper limit
2.0	$6.9 \ 10^{-9}$	$1.4 \ 10^{-8}$	$2.1 \ 10^{-8}$		$3.5 \ 10^{-8}$	$4.0 \ 10^{-8}$
2.1	$2.6 \ 10^{-8}$	$5.1 \ 10^{-8}$	$7.7 \ 10^{-8}$	$1.0 \ 10^{-7}$	$1.3 \ 10^{-7}$	$1.2 \ 10^{-7}$
2.2	$9.0 \ 10^{-8}$	$1.8 \ 10^{-7}$	$2.7 \ 10^{-7}$	$3.6 \ 10^{-7}$	-	$3.2 \ 10^{-7}$
2.3	$3.3 \ 10^{-7}$	$6.6 \ 10^{-7}$	$9.9 \ 10^{-7}$	-	-	$8.4 \ 10^{-7}$
2.4	$1.2 \ 10^{-6}$	$2.3 \ 10^{-6}$	-	-	-	$2.2 \ 10^{-6}$
2.5	$3.9 \ 10^{-6}$	$7.9 \ 10^{-6}$	-	-	-	$5.5 \ 10^{-6}$

- The ANTARES 90% C.L. upper limit excludes that a single point-like source produces n_p >5 HESE, assuming Γ =2.0.
- A single point-like source yielding $n_p>2$ is excluded for $\Gamma=2.3$
- A clusters made of $n_p \ge 2$ is excluded for $\Gamma > 2.3$.

AGNs close to Ernie and Bert?

TANAMI collaboration reported observations of 6 bright blazars locally compatibility with the 2 first PeV IceCube events IC14 and IC20.

☐ Krauß, F. et al. 2014, A&A, 566, L7

Source	$N_{\rm sig}$ p		Limit	$N_{\nu,IC}=1$	$N_{\nu,IC}=2$	$N_{v,IC}=3$	$N_{\nu,IC}=4$
			$10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$				
0235-618	0	1	1.3	-2.4	-2.1	-2.0	-1.9
0302 - 623	0	1	1.3	-2.4	-2.1	-2.0	-1.9
0308-611	0	1	1.3	-2.4	-2.1	-2.0	-1.9
1653-329	1.1	0.10	2.9	<-2.5	-2.5	-2.3	-2.2
1714-336	0.9	0.04	3.5	<-2.5	-2.5	-2.3	-2.2
1759-396	0	1	1.4	-2.4	-2.1	-2.0	-1.8

Soon on arXiv

→ Relevant constraints on spectral index of potential source

Latest update from IceCube

Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube

M. G. Aartsen,² M. Ackermann,⁴⁷ J. Adams,¹⁵ J. A. Aguilar,²³ M. Ahlers,²⁸ M. Ahrens,³⁸ D. Altmann,²² T. Anderson,⁴⁴ C. Arguelles,²⁸ T. C. Arlen,⁴⁴ J. Auffenberg,¹ X. Bai,³⁶ S. W. Barwick,²⁵ V. Baum,²⁹ J. J. Beatty,^{17,18} J. Becker Tjus,¹⁰ K.-H. Becker,⁴⁶ S. BenZvi,²⁸ P. Berghaus,⁴⁷ D. Berley,¹⁶ E. Bernardini,⁴⁷ A. Bernhard,³² D. Z. Besson,²⁶ G. Binder,^{8,7} D. Bindig,⁴⁶ M. Bissok,¹ E. Blaufuss,¹⁶ J. Blumenthal,¹ D. J. Boersma,⁴⁵ C. Bohm,³⁸ F. Bos,¹⁰ D. Bose,⁴⁰ S. Böser,¹¹ O. Botner,⁴⁵ L. Brayeur,¹³ H.-P. Bretz,⁴⁷

Latest update from IceCube

ANTARES Diffuse Neutrino Searches

Muons (2008-2011) 855 days

8 observed events (8.4 expected) flux limit (90%CL):

5.1x10⁻⁸ GeV/cm²/s/sr

45 TeV < F < 10 PeV

Cascades (2008-2012) 1247 days sensitivity: 2.5x10⁻⁸ GeV/cm²/s/sr

8 events observed, 4.9 expected 1.5 σ excess signal: 1.32*10⁻⁸ GeV/cm²/s/sr

Flux limit (90%CL) 4.92x10⁻⁸ GeV/cm²/s/sr 23 TeV < E < 7.8 PeV Angular resolution ~6-7°

Reducing the search window

- Fermi-Bubble region. Optimized for Γ =2.0, 3years of data Off zone = 11 events; On zone = 16 events \rightarrow +1.2 σ excess
- Galactic Center region. Optimized for Γ =2.6-2.7 and using 5y of data. Off zone= 166 events; On region= 177 events \rightarrow +0.83 σ excess
- IC hot spot. What size? To be optimized for IC Best fit Γ =2.2-2.4

Point-source searches

- Antares updated muon search 2007-2012 (1340 days)
- > 5516 neutrino candidates (90 % of which being better reconstructed than 1°)
- No significant excess
- Same most significant cluster with 6 additional events: p-value = 2.1% (2.3 σ) Compatible with background hypothesis

S. Adrian-Martinez et al., Astrophys. J. Lett. 786 L5, 2014

Join ANTARES-IceCube search

ANTARES 2007-2012 and the IC40, IC59, and IC79 samples for the Southern Hemisphere

Fraction of signal events which would be detected by each sample $(E^{-\gamma})$:

$$\frac{d\Phi}{dE} = \Phi_0 E^{-2} e^{-\sqrt{\frac{E}{E_{cutoff}}}}$$

Join ANTARES-IceCube search

Detector technology

• 31 3" PMTs

17 inch

- Digital photon counting
- Directional information

- Wide angle of view
- More photocathode than 1 ANTARES storey
- Cost reduction wrt ANTARES

1st prototype @ ANTARES

April 2013: First DOM installed on ANTARES instrumented line

Validates photon counting and directionality performances

🗎 Eur. Phys. J. C (2014) 74:3056

Conclusion

- Confirmed Astrophysical Neutrino signal form IceCube
- Intriguing event cluster & Nord/South asymmetry hints to Galactic component
- Constraints from ANTARES for various source models:
- → Point source or (small) extended source close to Galactic center
- → Point source at bright Blazars close to IC PeV events
- Spectral indices in the range -2.0 to -2.5 tested
- First combined Point source Analysis from 6 years ANTARES & 3 years IceCube

FUTURE

- Cascade events to search for correlations with IceCube
- Large extended Source models

