The population of Galactic TeV y-ray sources, and the search for Galactic PeV cosmic rays

Ryan C. G. Chaves

Marie Curie Fellow CNRS / IN2P3 / LUPM / Université Montpellier Montpellier, France

H.E.S.S. and the Galactic Plane Survey

~70 sources total now known

How to get to 3 PeV? Schure & Bell 2013 suggest: Young SNR shock in dense wind (CSM), from a Type II SN and RSG progenitor e.g. Cas A, but: Cas A photon spectrum cuts off at 20 TeV (\rightarrow E_{max} ~280 TeV).

How complete is the Survey?

or

If there is a (bright) PeVatron out there, would we have detected it already?

HGPS Sensitivity

along b = -0.3° for a 5- σ detection

HGPS Sensitivity

along b = -0.3° for a 5- σ detection

HGPS Sensitivity

along b = -0.3° for a 5- σ detection

FYI: CTA GPS by ~2022

SNR G1.9+0.3:

Youngest in the Galaxy, ultra-fast shock speed, close to Galactic Center, ... *PeVatron?*

eynolds+ 08; Green+ 08

SNR G1.9+0.3:

VHE quiet even after very deep observations

VHE limits → limits on: magnetic field, density, CR conversion efficiency, cut-off energy, total energy

e.g.

 $B > 12 \ \mu G$ $E_{cut} < 44 \ TeV$

VHE quiet even after very deep observations

VHE limits → **limits on**: magnetic field, density, CR conversion efficiency, cut-off energy, total energy

e.g.

 $B > 12 \mu G$ E_{cut} < 44 TeV (e^{\pm})

Why?

Circumstellar density expected to be low:

Estimated ~0.04 cm⁻³ (Reynolds+ 08). Constrained by VHE limits to < 1 cm⁻³ if θ = 0.1 Measured flux increase in radio/Xrays \rightarrow not evolving in dense stellar wind.

Also moderately distant (8.5 kpc) & likely Type Ia SN.

HESS J1641-463:

Brand-new, serendipitous discovery...

HESS J1641-463:

Hard Γ = 2.07 photon spectrum from little-known SNR

HESS J1641-463: leptonic model doesn't fit well (Klein-Nishina effect)

HESS J1641-463:

p-p model fits data better $\rightarrow E_{max} > 100 \text{ TeV } (99\% \text{ CL})$

The other big H.E.S.S. survey you probably haven't heard about (yet)

W

W

W

N 132D: A radio-loud middle-aged SNR

N 157B: The Crab Nebula's twin

30 Dor C: A TeV superbubble

SN 1987A: The youngest SNR

The LMC in VHE γ-rays

The LMC in VHE γ-rays

50-kpc-distant face-on satellite galaxy

First detection of individual accelerators in an external Galaxy

Discovery of a new VHE source class: superbubble (*N.B.* a candidate source of Galactic CRs)

Observing the extreme tip of the VHE population: two powerful sources: a Crab-like PWN and a unique SNR

Upper limit on the youngest known SNR: SN 1987A

Paper accepted, in press at Science (under embargo)

Conclusions

H.E.S.S.-I Galactic Plane Survey & LMC Survey completed in 2013

Rich dataset continues to deliver new science Most recently:

- Investigating PeVatron candidates:
 - young SNRs, but not only: multi-TeV data-driven approach
- powerful Galactic-like sources in an external galaxy

Coming out of H.E.S.S.-II commissioning phase Closed the HE-VHE gap with Fermi/LAT Detection of Vela pulsar

Since 2010, the H.E.S.S. array has undergone various major upgrades, to be completed in 2015.

Ready to hold the VHE torch until CTA in 2020.

Backup slides

H.E.S.S. is now a 5-tel hybrid array

4 12-m IACTs w/ recoated mirrors + 1 28-m IACT

Multiple triggering & targeting schemes available

CT5: 2048 PMTs 614 m² 3.2° FoV $E_{min} \sim 30 \text{ GeV}$ f = 38 m

Challenges & solutions for analyzing complex source regions

Background estimation with adaptive regions

Automated source extraction with maximum likelihood techniques

Extracting a clean signal to search for diffuse TeV emission

Extracting a clean signal to search for diffuse TeV emission

HESS J1640-465

Challenges for a PWN scenario

- No visible IC peak in GeV TeV range:
 - a) Very old lepton population, steep injection spectrum;
 - likely multiple emission zones
 - varying magnetic field within emission region
 - Complex spectra expected (i.e. Vela X, Hinton et al. 2011)
 - b) Fine-tuned multi-component injection spectrum to mimic powerlaw:
 i.e. Relativistic Maxwell + powerlaw tail (Slane et al., 2010)
- Overlap of PWN IC emission with SNR shell
 - a) Not observed for any other composite SNR so far
 - b) Requires relic PWN and old system?

GRBs at VHE

Typical re-pointing time < 1 min

Fully automated GCN triggering & observations; highest priority

Currently observing ~5 GRBs/yr

An exceptionally luminous TeV source & proton-accelerating SNR (which you probably haven't heard of yet)

An exceptionally luminous TeV source & proton-accelerating SNR (which you probably haven't heard of yet)

Synergies with other wavelengths: radio, IR, X-rays

Synergies with other wavelengths: HE (MeV-GeV) gamma-rays

Challenging the previous PWN interpretation

Abramowski et al. (H.E.S.S.) 2014 - MNRAS Eger et al. (H.E.S.S.) - Moriond

Synergies with other wavelengths: HE (MeV-GeV) gamma-rays

Challenging the previous PWN interpretation w/ new hadronic interpration

Abramowski et al. (H.E.S.S.) 2014 - MNRA: Eger et al. (H.E.S.S.) - Moriond

Schüssler, F., Brun, P., Chaves, R.C.G. et al. (H.E.S.S.) 2013

Also performed follow-up observations of IceCube hotspot in 2009

More formal partnerships with astroparticle community, including ToOs, currently under development

Schüssler, F., Brun, P., Chaves, R.C.G. et al. (H.E.S.S.) 2013

H.E.S.S.-II First Light, First Science

It's really big.

2.8 metric ton camera

580 metric ton total

largest "optical" telescope every built

> 875 90-cm mirror segments

slew speed 200° / min (GRBs!)

72 m
height
when
pointed
at
zenith

It's really big.

2.8 metric ton camera

580 metric ton total

largest "optical" telescope every built

> 875 90-cm mirror segments

slew speed 200° / min (GRBs!)

EAS Camera Images

Primary commissioning target for H.E.S.S.-II: **Crab Nebula**

Primary commissioning target for H.E.S.S.-II: **Crab Nebula**

Primary commissioning target for H.E.S.S.-II: Galactic Center

Vela PSR recap: Fermi/LAT view

Vela PSR recap: Fermi/LAT view

P2/P1 ratio increases with E: confirmed at VHE by H.E.S.S.?

Vela PSR detected by H.E.S.S.-II

Vela PSR detected by H.E.S.S.-II

Phaseogram: Clear, high-significance detection of pulsation

Pushing down to new E thresholds

Energy distribution of pulsed events

Pushing down to new E thresholds

Energy distribution of pulsed events

Now on to VHE pulsar physics

Now on to VHE pulsar physics

Constraining VHE spectrum & cutoff? Stay tuned...

Towards the next generation

2010-2012: Mirrors re-coated on all 4 telescopes. Regained near-original optical efficiency.

2013: H.E.S.S.-II First Light
First hybrid IACT array. First LST.
Access down to ~30 GeV.
Increased effective area. Improved angular resolution.

2014-15: H.E.S.S.-I camera electronics upgrade Reduce deadtime. Increase robustness. Greater integration. Testbed for CTA tech (e.g. NectarCAM).