Probing the Universe with cosmological electromagnetic cascades

Thomas Fitoussi (PhD student - 1st year)

Supervisors and collaborators:

Renaud Belmont, Julien Malzac, Pierre Jean (IRAP)

Alexandre Marcowith, Johann Cohen Tanugi (LUPM)

- Cosmological cascades
 - Cosmological cascades
 - Intergalactic Magnetic Field (IGMF)
 - Extragalactic light
- Expected observables effects
 - Energy redistribution
 - Halo effect
 - Time delay
- 3 Thesis works
 - Monte Carlo simulation
 - Compare to analytic results
 - Future works
- 4 Conclusion

- Distant source of γ -rays (100GeV to 100TeV)
- \circ Pairs production (e^-/e^+) on EBL (IR ightarrow UV)
- Inverse Compton scattering on CMB
- **EGMF** ⇒ lepton trajectory deflected

Intergalactic Magnetic Field (IGMF)

In galaxies

- Strong magnetic filed $(B \approx 10^{-5} G)$
- Generated by dynamo effect
- Required a seed to exist

EGMF generation

- Created during the inflation
- Created during phase transition (QCD or electroweak decoupling)
- Associated to large structure development

Models predict $B \approx 10^{-25}$ to 10^{-9} G !!

Durrer & Neronov 2013

- ① CMB
 - Black body at
- EBL: light from star:
- $0.1 \rightarrow 1000 \mu m$

 - History of stellar formation
 - Galactic evolution
 - Depends on redshift

nergy redistributior

lepton trajectory deflected by EGMF ⇒

Energy redistributed from TeV to GeV

Vovk et Al. (2012): Blazar 1ES 0229+200

lepton trajectory deflected by EGMF \Rightarrow

Halo effects = size of the source extended

One direction and monokinetic jet (10⁵ GeV)

lepton trajectory deflected by EGMF \Rightarrow

Time delay in the arrival of the particles

 $B pprox 10^{-16} G$ (Source: Neronov & al. 2010)

One direction and monokinetic jet (10⁵ GeV)

Thesis works

- Explore parameter space, make predictions for observables
- Compare with Fermi, and HESS data, predictions for CTA
- Model the capture, transport and annihilation of cascade positrons in our galaxy, compare with INTEGRAL 511 keV maps.

Thesis works

Cosmological cascades could improve our knowledge on

- Extragalactic magnetic field and its origin
- Spectrum and physics of γ -rays sources
- Extragalactic background light ⇒ Evolution of galaxies
- Annihilation of galactic positrons

Source: Durrer & Neronov 2013

Thank you! Questions?