Ultra-Low background Alpha particle spectrometer

M. Wójcik, S. Mieszek, K. Panas, G. Zuzel

Department of Applied Computer Physics Institute of Physics, Jagiellonian University Cracow, Poland

Outline

- Basic assumptions for the large-surface alpha scaler
- Monte Carlo simulations of the detector
- Construction details
- Initial perfomance of the spectrometer
- Concusions and plans

Design assumptions

MultiWire Proportional Chamber with a Guard Detector

- Low background materials used for construction:
 - Electropolished/etched Stainless Steel
 - Electropolished Copper
 - PTFE and Indium (+ rubber) Sealings
 - Ultra-High-Purity Nitrogen Gas used as a Counting Gas (Generated by a dedicated purifier based on charcoal trap).
- Overall chamber dimensions (LxWxH) ~ 50x50x40 [cm]

- Distance from Sample to Anode Plane (adjustable) approx. 4x to 6x α-particle range in gaseous N₂ (~15-24[cm])
 - α -particle energy ca. 4-6 MeV
 - Ionisation energy in gaseous N_2 36.3 eV per pair (e⁻/ion)
- Sample Tray [LxW]: 45x28 [cm]
- Max sample dimensions [LxW]: 30x20 [cm]
- Aquisition
 - 16-channel 250 MHz Fast Flash ADC card for signal shape analysis and rising edge time measurment "Struck SIS3316"
 - Rising edge time measurment for distinguish alpha particle from sample and anode or walls
 - slow signal for α -particle emanating from sample,
 - fast signal for $\alpha\mbox{-particle}$ emanating from anode wire or side walls
 - For Testing Purposes Multi-Channel Pulse Height Analyzer and Multi-Channel Scaler "*Tukan 8k*" used
- Slight Over-pressure gaseous kept in chamber for minimising air flow into the detector
- Background << background of semiconductor a spectrometers

General view (first draft)

Sketch of MultiWire plane

Simulations

- Monte Carlo simulations were performed to detmine optimal parameters of the specrtometer: distance between the sample tray and anode plane, distance between anode wires, distance between anode and guard wires
- MC simulations include radioactive decays (random emmissions of alphas), charge generation, tracking and collection (G4 + GARFIELD)

Track, clusters and drift lines

Plotted at 15.52.01 on 29/04/1-Distance from alpha source to MultiWire [§]plane, dy = 8.5cm $V_{anode} = 1000 V,$ $V_{screen} = 0 V,$ $V_{guard} = 1000 V$

Distance from alpha source to MultiWire plane, dy = 15cm

Simulation: different shapes of signals

• 001

- 010
- 100
- etc.-

Various directions of alpha particle

xyz

- 001 means that alpha particle travel in z direction (parallel to wire)
- 010 means that alpha particle travel in y direction (exactly vertical and instantaneous)

Chamber top view

HV and signal feedthroughs

Anode wire frame (stesalit)

Top cover with anode wire frame

Printed Circuit Board (to mount 20μm and 50μm Gold Plated Tungsten Wire)

Top cover with MultiWire Plane

- variable distance from sample to MultiWire Plane
- ortogonal Wire Plane
- segmented Wire Plane

Chamber with MW-Plane (left) and sample tray (right)

Guard electrode Ground Anode Ground Guard electrode

and the state of the second state of the secon

The Contract of the Contract o

Electronics for signal conditioning and aquisition

Signals from preamplifiers

Determination of the operational HV

Active Guard Mechanism

Guard test

Alpha source (²⁴¹Am) position on the sample tray

Guard test

Alpha source (²⁴¹Am) position on the sample tray

Comparision of spactra from anode and guards in different colimated alpha-particle source positions

•Alpha-particle source at position No.9:

electrons travel to guard electrodes (V=2500V) and anodes (V=1200V)
 Alpha-particle source at position No.0:
 electrons travel only to anodes (V=1200V); Signal on guard electrodes (V=2500V) is very small (noise?)

Background

- In selected region anode counts 83 events per 14 hours ca.6 α/h
- at this moment not calculated total active detector area (approx. 16,000 cm²)
 ca. 0.000375 α/cm²/h
 - In this area guards counts 3289 events
 235 α/h
 total events during 14 hours is 36985
 2642 α/h

Some problems with electronics

Overdrive

Ultra-high-purity gaseous nitrogen generator (Radon Trap)

- Liquid Nitrogen
 Dewar volume ~ 60 L
- Radon ²²²Rn trap filled with activated carbon
- Activity ²²²Rn (~0.5µBq/m³)
- Pressure in MWPC ca. 1.05 atm.

Gas flow regulation (constant flow)

Purging after opening the tray: 20 lpm (for ~1 h) Normal operations: 5 lpm

Conclusions and plans

- The spectrometer has been constructed basing on MC simulations
- Preliminary tests show that the performance of the detector meets the expectations
- Still to be done:
 - carefull background determination (long-term test)
 - determination of the eficiency for large-area surface source (source available, A_s = 0.6 mBq – thanks to prof. Mietelski)
 - determination of the Minimum Detectable Activity
 - measurement of tests steel/copper/teflon samples