Development of ZnMoO₄ and Li₂MoO₄ crystal scintillators

Laboratory of Crystal Growth, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090, Russiaa

Content

The Low Thermal Gradient Cz Technique (LTG Cz)

The General Features of the Conventional Cz Technique The General Features of the LTG Cz Technique

Crystals Growth BGO, CWO, ZWO, ZMO und LMO

Crystal morphology Influence of growth rate on shaping Advantages of BGO, CWO, ZWO, ZMO und LMO Crystals Grown by the LTG Cz

Collaboration with

Institute for Nuclear Research, Kyiv, Ukraine

was initiated by F. Danivich visit of the NIIC at the end 2005

CWO for neutrinoless 2β decay search

- 2006- Evaluation of CdWO₄ crystals grown by the
 2008: LTG Cz as detectors for high sensitivity double beta decay experiments was performed. CWO Ø 20x20 mm - Ø70x70 mm
- 2009: Trial Growth of ¹⁰⁶CdWO₄ crystals is performed Trail growth of ¹¹⁶CdWO₄ crystals is planned

ZMO for neutrinoless 2 β decay search

2012: Project LUMINEU (CNRS, France) Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

2010 : Growth of large size radiopure ZnWO₄ crystals

RHR ~10% at gammas 662 keV for Ø40x40 mm cylinders

Collaboration with

- Institute for Nuclear Res., Kyev
- Max Plank Institute (Germany)
- INFN (Italy)

Big size CWO und ZWO crystals

Traditional Czochralski Technique

- High temperature gradient (10-100 K/cm)
- Perfect cleavage of CWO thermoelastic stress destroy crystal
- High local superheating of melt up to 200 K
- Evaporation and decomposition of CWO melt

The General Features of the LTG Cz Technique

- •The grown crystal inside the crucible
- •Weighing control at all the stages of the process
- •Temperature gradients less 1.0 deg/cm.
- •Temperature fluctuations in the melt are practically not developed
- •Evaporation and decomposition processes are suppressed by the pipe socket, which works as a diffusion barrier
- •The faceted interface develops and layered growth mechanism prevails

Experimental and the simulated values of temperature fields

Software package CGSim was used for mathematical modeling of heat transfer in the growth furnace.

Heat conditions can be characterized experimentally by the curves of temperature distribution along the crucible

Dislocation density 10²/cm²

Crystal morphology LTG CZ

Co-existing two mechanism of growth

Layer-by-layer growth mechanism

ZnMO₄ crystals grown along [001] direction

Growth interface

2012: Project LUMINEU (CNRS, France) Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

ZMO crystal grown with the charge utilization factor ~80%

Two different ways are possible to grow high quality oxide crystals by Czochralski technique.

- Conventional Czochralski technique is based on the use of high temperature gradients to suppress the face formation and achieve the fully rounded solidification front.
- By the contrast in The Low Thermal Gradient Czochralski Technique (LTG Cz) the growth conditions are selected in such a way that the temperature gradients become small and the solidification front becomes fully faceted .

ZWO scintillation crystals

Growth direction [010]

Crucible dimensions: Ø 70 mm; H 150-200 mm

Initials: HP ZnO from Umicore (Belgium); HP WO3 NIIC

Growth of isotopically enriched ¹⁰⁶CdWO₄ and ¹¹⁶CdWO₄

ZMO: Full production cycle at NIIC is developing

JACKSON criterion aL/kT

CWO			
Тлл	Q пл ккал/мол	Q пл дж/мол	
1543	33,3	133200	10,4

LMO			
Т пл	Q пл дж/г	Q пл дж/мол	
968	196	34068,72	4,2

zwo			
Т пл	Q пл дж/г	Q пл дж/мол	
1475	356	111072	9,1

ZMO			
Т пл	Q пл дж/г	Q пл дж/мол	
1273	431	96975	9,2

BGO			
Т пл	Q пл ккал/мол	Q пл дж/мол	
1308	44,6	178400	16,4

Morphology of LMO crystals, grown under low thermal gradient conditions

Results changing of crystallization rate in during growth process

LiMoO4: transm in diff pointsof large boule 16oct1a_2014.opj d=11.5 mm

The first crystallization and recrystallization LMO crystals

Diameter crystal 55mmDiameter crucible 68mm

Two different ways are possible to grow high quality oxide crystals by Low Thermal Gradient Czochralski technique.

- The Low Thermal Gradient Czochralski Technique are allowed to achieve the fully rounded solidification front und good quality LMO crystal.
- By the contrast in The Low Thermal Gradient Czochralski Technique (LTG Cz) the growth conditions are selected in such a way that the temperature gradients become small and the solidification front becomes fully faceted .

CONCLUSIONS

• LTG CZ technique good variant for growing ZMO und LMO crystals high quality:

- · ZMO layer-by-layer mechanism of growth
- LMO normal mechanism of growth

• The grown bouls ZMO und LMO high quality is more 80% of the mass of initial powder it is real fact

LTG Cz technique with resistance-type heater is an effective method to grow oxide scintillation crystals. The grown crystals is more 80% of the mass of initial powder. The growth process and equipment are the most advanced parts of proceeding to mass scale production.