Radioactive contamination of enriched 106,116CdWO₄ crystal scintillators

Fedor A. Danevich
Institute for Nuclear Research, Kyiv, Ukraine
http://lpd.kinr.kiev.ua/

- Motivation
- Development of ^{106,116}CdWO₄ crystal scintillators
- Experiments to search for 2β decay of ¹⁰⁶Cd and ¹¹⁶Cd
- Radioactive contamination ^{106,116}CdWO₄ scintillators
- Segregation of thorium, radium and potassium
- Conclusions

Motivation

¹¹⁶Cd

One of the most promising isotopes to search for $0v2\beta$ decay

- $Q_{2\beta} = 2813 \text{ keV}, \delta = 7.5\%$
- promising theoretical calculation
- the possibility of isotopic enrichment in large amount

The one among six $2\beta^+$ isotopes (2ϵ , $\epsilon\beta^+$, $2\beta^+$)

- $Q_{2\beta} = 2775 \text{ keV}, \delta = 1.3\%$
- possibility to distinguish mass and RCH mechanism
- resonant 2ε0ν decay on the exited levels of ¹⁰⁶Pd

- good scintillation properties
- low levels of internal contamination
- particle discrimination ability to reduce background
- well established production

Production of 106,116CdWO₄

Purification of ¹⁰⁶Cd and ¹¹⁶Cd metal samples

Distillation through getter filters

Concentration of impurities in ¹⁰⁶Cd (ppm)

result

1 – crucible; 2 – initial metal; 3 – plate with holes; 4 – getter; 5 – condenser; 6 – purified metal

Element	Before	After
K	11	0.04
Ni	0.6	< 0.2
Cu	5	0.5
Fe	1.3	0.4
Mg	12	<0.05
Mn	0.1	0.1
Cr	9	<0.1
Pb	270	<0.3

R.Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477 G.P.Kovtun et al., Functional Materials 18 (2011) 121

Production of 106,116CdWO₄

Synthesis of ^{106,116}CdWO₄ compounds

After dissolving the metallic cadmium in nitric acid, the purification was realized by co-precipitation on a collector. Solutions of cadmium nitrate and ammonium para-tungstate were mixed and then heated to precipitate cadmium tungstate:

$$Cd(NO_3)_2 + (NH_4)_2WO_4 \rightarrow CdWO_4 + 2NH_4NO_3$$

- All the operations were carried out by using quartz or polypropylene lab-ware, materials with low level of radioactive contaminations
- Reagents of high purity grade (concentration of any metal less than 0.01 ppm)
- Water, acids and ammonia were additionally distilled by laminar evaporation in quartz installation
- Additional recrystallization was performed to purify ammonium para-tungstate
- P. Belli et al., NIMA 615 (2010) 301
 A. Barabash et al., JINST 6 (2011) P08011

Production of 106,116CdWO

Crystal growth by Low-Thermal-Gradient Czochralski technique

standard LTG-C 25-30% Output up to 90% Quality typically higher Radiopurity expected better Loses of powder <0.3% 2-3%

[1] A.A. Pavlyuk et al., Proc. APSAM-92, April 26–29, Shanghai, China (1992)

Optical properties and energy resolution

¹⁰⁶CdWO₄ 231 g (87%) [1]

116CdWO₄ 1868 g (87%) [2]

Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-thermal-gradient Czochralski technique to grow the crystal

[1] P. Belli et al., NIMA 615 (2010) 301

[2] A.S. Barabash et al., JINST 6 (2011) P08011

The total losses of ¹⁰⁶Cd ≈ 2%

6

Low background ¹⁰⁶CdWO₄ detector in DAMA R&D at LNGS

P. Belli et al., PRC 85 (2012) 044610

106CdWO₄ in the GeMulti setup with 4 HPGe

4 HPGe, ~ 225 cm³ each, in one cryostat

¹⁰⁶CdWO₄ in coincidence / anticoincidence with HPGe

Sensitivity to 2ϵ , $\epsilon\beta^+$ and $2\beta^+$ decay of

¹⁰⁶Cd:

 $T_{1/2} \sim 10^{19} - 10^{21} \text{ yr}$

V.I. Tretyak et al., EPJ WC 65(2014)01003.

side view

8

¹¹⁶CdWO₄ detector

¹¹⁶CdWO₄ set-up (DAMA R&D at LNGS)

²²⁸Th and ²²⁶Ra by timeamplitude analysis

D.V. Poda et al., EPJ WC 65 (2014) 01005.

Decay of ²²⁸Th in ¹¹⁶CdWO₄

- Contamination is mainly by thorium
- Radium is much lower

Radiopurity of 106,116CdWO₄ and CdWO₄

(mBq/kg) Ref data April 2013

Nuclide	¹⁰⁶ CdWO ₄ [1]	¹¹⁶ CdWO ₄ [2]	CdWO₄ [3,4]
⁴⁰ K	<1.4	<1	< (1.7 – 5)
^{110m} Ag	<0.06	= 0.12(4)	_
¹¹³ Cd	= 182(1)	= 100(10)	= 558(4)
^{113m} Cd	= 116 000(4000)	= 460(20)	< 3.4 – 150
²³² Th	<0.07	<0.08	< 0.03
²²⁸ Th	= 0.042(4)	= 0.060(6)	< (0.003 - 0.014)
²³⁸ U	<0.6	<0.5	<1.3
²²⁶ Ra	= 0.012(3)	<0.005	< (0.007 – 0.02)
²¹⁰ Po	<0.2	<0.5	< 0.06
Total α	= 2.1(2)	= 1.9(2) - 2.7(3)	= 0.26(4)

[1] P. Belli et al., PRC 85 (2012) 044610

[3] F.A. Danevich et al., Z. Phys. A 355 (1996) 433

[2] A. Barabash et al., JINST 6 (2011) P08011

[4] P. Belli et al., Phys. Rev. C 76 (2007) 064603

Possibility to improve the radiopurity of ¹¹⁶CdWO₄ by recrystallization

Activity of ²²⁸Th:

10(2)

0.09(1)

0.04(1)

0.02(1)

May 2014

rest of the melt after the crystal growth 279 g

Nuclide	Crystal	Rest of melt
⁴⁰ K	<1	27(11)
²²⁶ Ra	<0.005	64(4)
²²⁸ Th	0.02 - 0.09	10(2)

²²⁸Th in charge ~1.4 mBq/kg

We expect to reduce K, Th, U and Ra contamination by recrystallization

Thorium expected to be reduced by a factor \sim 35 \Rightarrow 1 μ Bq/kg

conclusions

 High quality CdWO₄ crystal scintillators were developed from enriched ¹⁰⁶Cd and ¹¹⁶Cd with output 87%, irrecoverable losses 2%

- Radioactive contamination of the ^{106,116}CdWO4 crystals is on the level of 0.05 mBq/kg ²²⁸Th, ~ < 0.01mBq/kg of ²²⁶Ra
- Strong segregation of thorium is observed in CdWO₄ crystals, substantial reduction of Th (~ 35 times) may be achieved by recrystallization