Status of AMoRE

Fedor A. Danevich
Institute for Nuclear Research, Kyiv, Ukraine
http://lpd.kinr.kiev.ua/

- AMoRE goals & collaboration
- 40Ca¹⁰⁰MoO₄ crystal scintillators
- Cryogenic set-up & underground lab
- Monte Carlo simulation
- Current status & prospects

AMoRE goals

(Advanced Mo-based Rare process Experiment)

- Search for 0v2β decay of ¹⁰⁰Mo by using cryogenic CaMoO₄ scintillating bolometers on the level of the inverted hierarchy of neutrino mass
- Search for dark matter (WIMP)

	3 steps:	$\lim T_{1/2}$
1.	AMoRE pilot: ~ 1 kg of ⁴⁰ Ca ¹⁰⁰ MoO ₄	~ 10 ²⁴ yr
2.	AMoRE 10: ~ 10 kg	$\sim 2 \times 10^{25} \text{ yr}$
3.	AMoRE 200: ~ 200 kg	~ 4×10 ²⁶ yr

Collaboration

⁴⁰Ca¹⁰⁰MoO₄ crystal scintillators

• SB28 196 g • SB29 390 g

S35256 g

• SS68 350 g

One more crystal boule is already produced (SB81)

Radiopurity level of ⁴⁰Ca¹⁰⁰MoO₄

(AMoRE 10 requirement: <0.05 mBq/kg for ²²⁶Ra and ²²⁸Th)

Fast β - α sub-chain in 226 Ra chain 214 Bi (Q_{β} = 3.27 MeV) \rightarrow 214 Po (Q_{β} =7.83 MeV)

Fast α - α sub-chain in ²²⁸Th chain ²²⁰Rn (\textit{Q}_{β} = 6.41 MeV) \rightarrow ²¹⁶Po (\textit{Q}_{β} = 6.91 MeV)

Radiopurity of already produced ⁴⁰Ca¹⁰⁰MoO₄ crystals (mBq/kg)

Chain	²³² Th (²²⁸ Th)	²³⁵ U (²²⁷ Ac)	²³⁸ U (²²⁶ Ra)
S35	0.64	1.6	4.5
SB28	0.07	-	0.08
SB29	0.032	0.67	0.23
SS68	0.027	0.24	0.062

Purification of Mo and Ca, recovery of Ca and Mo from CaMoO₄

R&D of Mo and Ca purification and recovery of Ca and Mo from CaMoO₄ are in progress

MMC cryogenic technique for AMoRE

(doubly enriched crystal)

Excellent α/β separation

Yangyang(Y2L) Underground Laboratory

Minimum depth: 700 m / Access to the lab by car (~2km)° F.A. Danevich 4th ISOTTA meeting, 1-2 December 2014 CSNSM Orsay

Experimental space in A5 at Yang Yang

Area: lab (~ 43 m²), monitor room (~ 16 m²) Rn clean shower (2 persons, 2 min) Overall arrangement of cryogenic set-ups

Cryostat for AMoRE pilot (→ AMoRE 10)

Cryogen-free Dilution Refrigerator for AMoRE 10

Leiden Cryogenics (Netherland)

-Pulse Tube based CFDR

-Model: CF-1200-Maglev

-Minimum Temperature : <10 mK

-Cooling-power: 1.4 mW at 120 mK

-Cool-down time : ~ 20 hours with LN₂ precooling

without any extra load

-Install and test cooling: Mid October 2014 (delay: beginning of December 2014)

Monte Carlo simulation (GEANT4)

Background source	Activity [μBq/kg]	Bg [10 ⁻⁴ cnt/keV/kg/yr]	Bg reduced by PSD [10 ⁻⁴ cnt/keV/kg/yr]
TI-208, internal	10 (²³² Th)	0.36	0.36
TI-208, in Cu	16 (²³² Th)	0.22	0.22
BiPo-214, internal	10	0.11 1)	≤ 0.01
BiPo-214, in Cu	60	1.8 ^{1) 2)}	≤ 0.18
BiPo-212, internal	10 (²³² Th)	0.08 1)	≤ 0.01
BiPo-212, in Cu	16 (²³² Th)	0.36 1) 2)	≤ 0.04
Y-88, internal	20	0.19	0.19
Random 2v2β	8.7×10 ³⁾	3.1 ³⁾	1.2
Total		6.2	≤ 2.2

- 1) Can be reduced x0.1 by alpha/beta PSD
- 2) Can be reduced by Teflon coating of Cu (to remove surface α)
- 3) Can be reduced by pulse-shape discrimination Muon background @Y2L: ~1.4e⁻⁴ cnt/keV/kg/yr

Current status

- Five ⁴⁰Ca¹⁰⁰MoO₄ crystal (1.5 kg) scintillators are produced and tested (one crystal should to be tested soon)
- Radiopurity of 3 crystals satisfies the AMoRE 10 requirements
- The Yangyang underground lab is extended (+ two clean rooms 200 m³, shield and supporting structure for cryostat, radon free atmosphere)
- Low background cryostat is expected to be delivered this week
- Data acquisition system and electronics are ready
- Start of AMoRE pilot run (1.2-1.5 kg of ⁴⁰Ca¹⁰⁰MoO₄): January 2015

Schedule

5 CMO, ~ 1.2 kg AMORE Pilot, 2015

35 CMO, 0.3 kg 5 layers × 7 columns AMoRE 10, 2016

390 CMO (Ø5×6 cm) 30 layers, 13 columns AMoRE 200, 2019

Stage	Start (run, yr)	Background (yr/keV/kg)	Sensitivity lim $T_{1/2}$ (yr)	$\langle m_{\rm v} \rangle$ (eV)
AMoRE pilot	Jan. 2015 (1)	0.01	~10 ²⁴	<0.4 - 1
AMoRE 10	Sep. 2016 (3)	0.002	~2x10 ²⁵	0.08 - 0.22
AMoRE 200	Jan. 2019 (5)	0.0002	~4×10 ²⁶	0.016 - 0.047