

PRECISE DETECTION OF THE 148SM ALPHA DECAY S.NAGORNY - INFN GSSI

FOURTH ISOTTA GENERAL MEETING - CSNSM ORSAY - DECEMBER 2ND, 2014

ALPHA DECAYS

- Energetically allowed for naturally occurring isotopes with mass greater than 142, starting from Cerium element
- For the elements lighter than bismuth, the available decay energy is smaller than 3 MeV, with reduced probability of tunneling through the nuclear potential barrier (life-times longer than 10¹¹ y)
- Last year, ¹⁵¹Eu alpha decay has been observed and the half-life was measured to be $T_{1/2} = 4.6 \times 10^{18}$ y

Scintillating bolometer technique offers new opportunities for the investigation of rare nuclear processes through a combination of good energy resolution, high detection efficiency, possibility of particle discrimination, and high flexibility at utilizing main absorber material.

THE IDEA: DOPED ZNWO4

- Well-developed technology of production
- Non-hygroscopic material
- Good mechanical properties and easy handling
- High radiopurity

- High light yield at low temperature
- Successfully tested several times as a scintillating bolometer
- Can be doped by different elements up to level of about 1 wt%

Sm isotope	144	147	148	149	150	152	154
Enrichment, %	0.063(2)	0.909(8)	95.54(1)	2.569(9)	0.343(9)	0.384(6)	0.193(6)
Natural i.a.	3.07(7)	14.99(18)	11.24(10)	13.82(7)	7.38(1)	26.75(16)	22.75(29)

Our measurement turns to be a demonstrator for a new experimental approach!

THE DETECTOR

- 22.014 g ZnWO₄:¹⁴⁸Sm crystal
 - Growth: Czochralski method in air
 atmosphere
 - Materials: high purity (99.995%) ZnO, WO₃ plus ¹⁴⁸Sm₂O_{3 powder}
 - Shape: irregular (\u03c812 mm × 20.7 mm)

- The crystal was surrounded by a reflecting foil (3M VM2002)
- The crystal was faced to a Ge disk (\u00e950 mm×300 μm) used as light detector
- Both were equipped with NTD thermistors, glued via resin epoxy glue

THE DATA TAKING @LNGS

- Operated in Oxford 200 ³He/⁴He dilution refrigerator
- Data collected for a total live time of 364 h
- Detector calibrated using
 - γ lines from external ²³²Th source
 - internal α line from ¹⁴⁷Sm
- Light detector was calibrated using ⁵⁵Fe source

LIGHT YIELD VS HEAT

7

7

COULD IT BE ANYTHING ELSE?

HR-ICP-MS

lsotope	Abundance [%]	Q _a [keV]	T _{1/2} [y]	Concentration [10 ⁻⁶ g/g]	Expected events
¹⁴⁴ Nd	23.798(19)	1905(1)	22.9×10 ¹⁴	72	19.8
¹⁵¹ Eu	47.81(6)	1949(7)	4.62×10 ¹⁸	< 10	< 0.002
¹⁵² Gd	0.20(1)	2203.0(1.4)	1.08×10 ¹⁴	< 25	< 1.1

assuming Nd natural isotopic composition

A CLOSER LOOK TO ¹⁴⁷SM PEAK

Gaussian shape does not fit the spectrum

NON-GAUSSIANITY

- There is no clear physics motivation but the detector response function is not a gaussian.
 - Possible explanations?
 Position effects, crystal inhomogeneity, surface events...???

 We use as detector response function a sum of two crystal balls, evaluating their parameters on the Sm peak

 $RF(Q, E) = N \cdot [CB_{left}(Q, E) + \delta \cdot CB_{right}(Q, E)]$

Using RooFit toolkit we performed a fit:

- maximum likelihood
- unbinned
- extended
- simultaneous
 - Sm region (cut accepted)=
 - Sm region (cut rejected)=
 - ²²⁸Ac peaks
 - ⁴⁰K peak
 - ²⁰⁸Tl peak -

To estimate the selection efficiency

To include the systematic errors
 → due to the calibration (the calibration parameters are left free)

Roo

$$\begin{split} FF(A) &= N_{147} \ RF(Q_{147}, E_{\alpha}(A)) \\ &+ N_{148} \ RF(Q_{148}, E_{\alpha}(A)) \\ &+ N_{Ac1} \ Gauss(Q_{Ac1}, E_{\beta\gamma}(A)) \\ &+ N_{Ac2} \ Gauss(Q_{Ac2}, E_{\beta\gamma}(A)) \\ &+ N_K \ Gauss(Q_K, E_{\beta\gamma}(A)) \\ &+ N_{TI} \ Gauss(Q_{TI}, E_{\beta\gamma}(A)) \end{split}$$

$$\frac{N_{148}}{N_{147}} = \frac{T_{147}}{T_{148}} R_{148/147}$$

$$E_{\beta\gamma}(A) = p_0 + p_1A + p_2A^2$$

$$E_{\alpha}(A) = (p_0 + p_1A + p_2A^2) / QF$$

 $\begin{aligned} \mathsf{FF}(\mathsf{A}) &= \mathsf{N}_{147} \, \mathsf{RF}(\mathbf{Q}_{147}, \mathsf{E}_{\mathsf{a}}(\mathsf{A})) \\ &+ \mathsf{N}_{148} \, \mathsf{RF}(\mathbf{Q}_{148}, \mathsf{E}_{\mathsf{a}}(\mathsf{A})) \\ &+ \mathsf{N}_{\mathsf{Ac1}} \, \mathsf{Gauss}(\mathbf{Q}_{\mathsf{Ac1}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \mathsf{N}_{\mathsf{Ac2}} \, \mathsf{Gauss}(\mathbf{Q}_{\mathsf{Ac2}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \mathsf{N}_{\mathsf{K}} \, \mathsf{Gauss}(\mathbf{Q}_{\mathsf{K}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \mathsf{N}_{\mathsf{TI}} \, \mathsf{Gauss}(\mathbf{Q}_{\mathsf{TI}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \end{aligned}$

$$\frac{N_{148}}{N_{147}} = \frac{T_{147}}{T_{148}} R_{148/147}$$

Gaussian constrains on known values

$$E_{\beta\gamma}(A) = p_0 + p_1A + p_2A^2$$

$$E_{\alpha}(A) = (p_0 + p_1A + p_2A^2) / QF$$

 $\begin{aligned} \mathsf{FF}(\mathsf{A}) &= \mathsf{N}_{147} \, \mathsf{RF}(\mathsf{Q}_{147}, \mathsf{E}_{\mathsf{a}}(\mathsf{A})) \\ &+ \, \mathsf{N}_{148} \, \mathsf{RF}(\mathsf{Q}_{148}, \mathsf{E}_{\mathsf{a}}(\mathsf{A})) \\ &+ \, \mathsf{N}_{\mathsf{Ac1}} \, \mathsf{Gauss}(\mathsf{Q}_{\mathsf{Ac1}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \, \mathsf{N}_{\mathsf{Ac2}} \, \mathsf{Gauss}(\mathsf{Q}_{\mathsf{Ac2}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \, \mathsf{N}_{\mathsf{K}} \, \mathsf{Gauss}(\mathsf{Q}_{\mathsf{K}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \\ &+ \, \mathsf{N}_{\mathsf{TI}} \, \mathsf{Gauss}(\mathsf{Q}_{\mathsf{TI}}, \mathsf{E}_{\mathsf{\beta}\mathsf{\gamma}}(\mathsf{A})) \end{aligned}$

$$\frac{N_{148}}{N_{147}} = \frac{T_{147}}{T_{148}} R_{148/147}$$

Gaussian constrains on known values

Many free parameters

$$E_{\beta\gamma}(A) = p_0 + p_1A + p_2A^2$$

$$E_{\alpha}(A) = (p_0 + p_1A + p_2A^2) / QF$$

THE RESULTING FIT

Half-life ($6.4^{+1.2}_{-1.3}$) × 10¹⁵ y

Q-value 1987.3 ± 0.5 keV

FWHM resolution 4.7 ± 0.5 keV

Quenching Factor 1.1141 ± 0.0001

CONCLUSIONS

- We operated a 22.014 g ZnWO₄:¹⁴⁸Sm crystal as a bolometer, facing it to a bolometric Ge light detector inside a cryogenic facility at LNGS for a total live time of 364 hours.
- We report the precise measurement of ¹⁴⁸Sm α decay to ground state of ¹⁴⁴Nd with T_{1/2} = (6.4^{+1.2}_{-1.3}) × 10¹⁵ y.
- We evaluated its Q-value as 1987.3 ± 0.5 keV.

Paper in preparation

BACKUP

CRYSTAL BALL FUNCTION

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right),$$

$$B = \frac{n}{|\alpha|} - |\alpha|,$$

$$N = \frac{1}{\sigma(C+D)}$$

$$C = \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$

$$D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right)$$