4th ISOTTA general meeting

Aboveground test of an advanced Li₂MoO₄ scintillating bolometer

Michele Mancuso

2 December 2014

General overview

Outline

- General overview
 - Li₂MoO₄ properties
 - Li₂MoO₄ samples
- Measurements and results
 - Luminescent characterization
 - Li₂MoO₄ scintillating bolometer
 - Working points
 - Aboveground tests
 - Results
- Conclusion and prospective

Li₂MoO₄ properties and characteristic

- Molibdate compound free from natural long living radioactive isotopes
- Scintillating crystal
- High concentration of Mo (55% in mass)
- Easy to grow
- It can be sensitive to DM nuclear recoils because of the low mass of Li
- It's a good neutron detector due to the high cross section to neutrons capture of ⁶Li
- Interesting for the searches for quasi-monoenergetic solar axions coupled to nucleons through resonant excitation of Li nuclei

Property	Value
Density (g/cm ³)	3.02 - 3.07
Melting point (K)	974 ± 2
Hygroscopicity	Weak
Index of refraction	1.44

Property	Value
Wavelength	540 at 85 K
of maximum	590 at 8 K
emission (nm)	600 at 85 K
Radioactive	
contamination (mBq/kg)	
40 K	170(80)
²³² Th	≤ 0.11
^{238}U	≤ 0.09

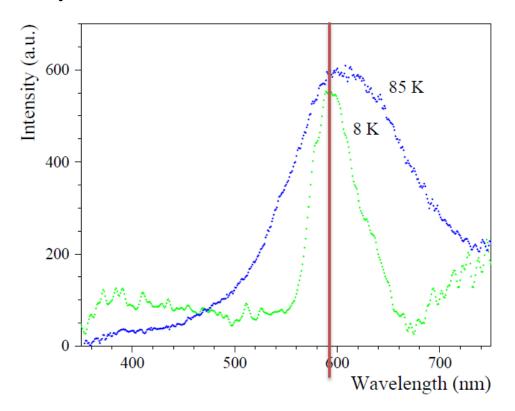
Li₂MoO₄ samples

Optically clear defect-free Li_2MoO_4 crystals 25–55 mm in diameter and 70 – 100 mm in length with mass of 0.1-0.37 kg were grown.

Two elements were cut from one of the boules:

- Luminescence measurements (10×10×2 mm) and
- Bolometric test (\bigcirc)40 × 40 mm).

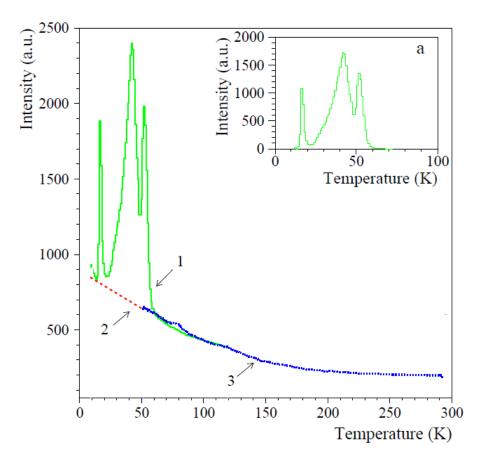
➤ Most of the gathered experience on ZnMoO₄ can be extended



Test large Li₂MoO₄ crystal

Luminescence measurement

The luminescence of the ZnMoO₄ crystal sample ($10\times10\times2$ mm³) was investigated under X-ray excitation.



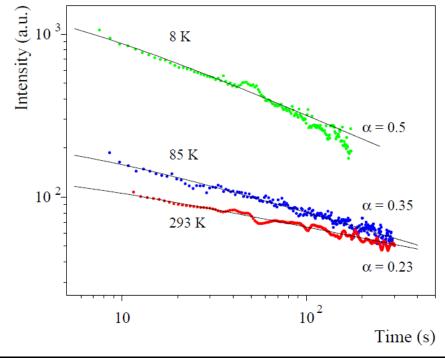
- The sample was irradiated by X-rays from a tube with a rhenium anode (20 kV, 20 mA).
- Light from the crystal was detected with two photomultiplier FEU-106 (350 -820 nm) and FEU-83 (600 –1200 nm).
- The measurements were carried out using a high transmission monochromator MDR-2(diffraction grating 600 mm⁻¹).

• The most intensive emission band was observed in the spectra with maximum at ≈ 600 nm at both temperatures

Luminescence measurement

The dependence of Li₂MoO₄ luminescence intensity in function of temperature was studied in the temperature interval 8–290K.

We have subtracted the thermo-stimulated luminescence (TLS) contribution assuming a linear dependence of the luminescence on temperature.


❖ The luminescence increases lowering the temperature.
(this behavior is exhibited by several

Molibdates)

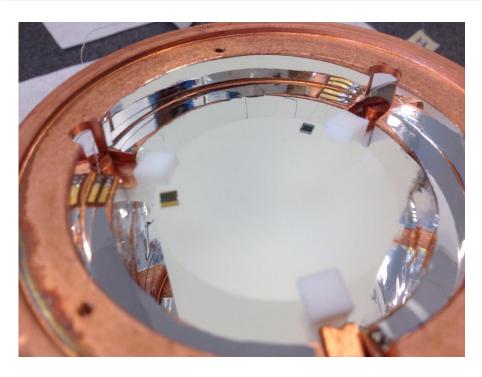
Luminescence measurement

The long-term phosphorescence was measured at 293 K, at 8 K and 85 K. The phosphorescence decay curves can be approximated by the hyperbolic function:

$$I = \frac{I_0}{(1 + a \times t)^{\alpha}}$$

I: intensity of phosphorescence

 I_0 : intensity of phosphorescence after irradiation


a: coefficient which depends of material

 α : degree of the hyperbolic function

$$\alpha(8 \text{ K}) = 0.5$$

 $\alpha(85 \text{ K}) = 0.35$
 $\alpha(293 \text{ K}) = 0.23$

Bolometer assembly

Outline

The cylindrical crystal with a size of $\bigcirc 40 \times 40$ mm and a mass of approximately ~ 150 g, was used in a scintillating bolometer.

- Cylindrical copper holder
- Six PTFE elements fixing it at the copper support
- The Li₂MoO₄ was surrounded by a reflecting foil (VM2000, VM2002 by 3M) to improve light collection.
- Ge thermistor for the read-out of the heat signals.
- A heating element for temperature stability corrections
- ❖ The compound Li₂MoO₄ is slightly hygroscopic: The crystal (before assembly) and the detector (after assembly) were just kept under inert dry atmosphere and the installation time was minimized.
- ❖ We chose a light detector with an advanced design N. Coron et al., Highly sensitive large-area bolometers for scintillation studies below 100 mK, Opt. Eng. 43 (2004) 1568.

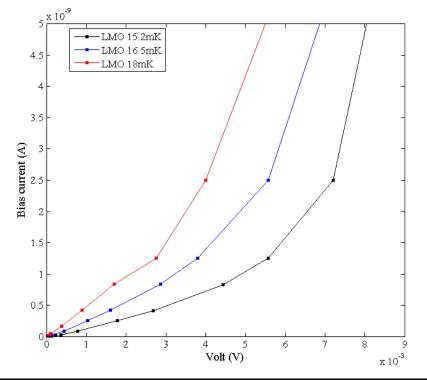
Set-Up

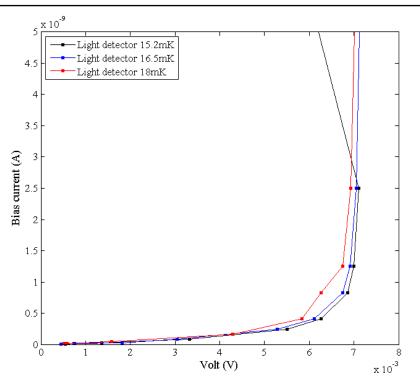
CSNSM Test facility (Orsay, France)

- Pulse tube cooler as a first cryogenic stage
- Free from cryogenic fluids
- Reach temperature below 12 mK
- The experimental space of 5 l allows measurement of three large mass bolometers
- Low electronic noise:
 - •30 nV/ $\sqrt{\text{Hz}}$ at 0.1 Hz
 - •7 nV/ $\sqrt{\text{Hz}}$ at 1 Hz
 - •3 nV/ $\sqrt{\text{Hz}}$ at f>3 Hz
- Mechanical decoupling at mixing chamber to reduce the effect of the pulse tube vibration.
- high purity lead shield (minimum thickness 10 cm) containing less than 30 Bq/kg of 210 Pb

energy range	without lead	with lead	Reduction
keV	counts/sec	counts/sec	factor
100-500	1.840	0.084	0.046
500-1000	0.309	0.0156	0.050
1000-1500	0.114	0.0064	0.056
1500-2000	0.027	0.0034	0.126
2000-2500	0.014	0.0021	0.15
2500-3000	0.005	0.0016	0.32

This value refers to 24g ZnMoO₄ bolometer

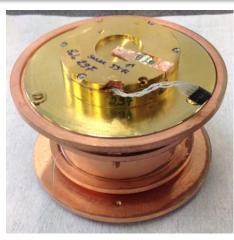

4th ISOTTA general meeting

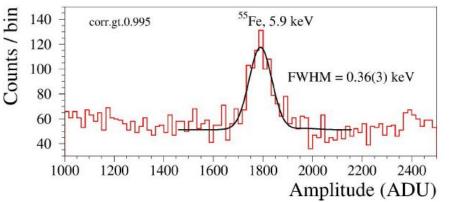


Working point and measurement

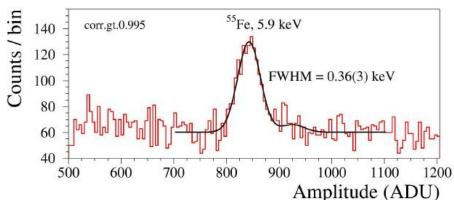
Outline

Detector	Temperature mK	Acquisition rate Hz	Applied bias nA	Load resistor $G\Omega$	Applied gain	Bessel cut-freq Hz	NTD resistance MΩ
LMO	16.5	20000	5	1	1403	120	1.37
LD	16.5	20000	2.5	1	1403	675	2.82
LMO	15.2	20000	5	1	1403	120	1.61
LD	15.2	20000	5	1	1403	675	1.24




Light detector calibration

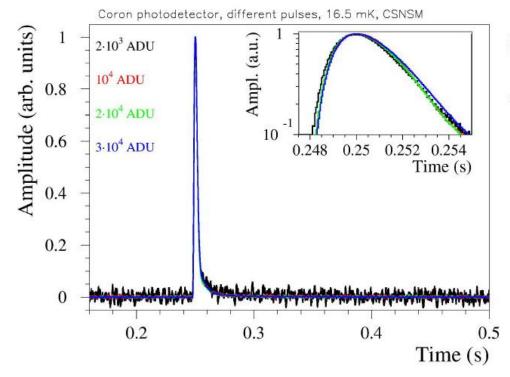
- The advanced light detector is a germanium wafer with \bigcirc 40 mm and thickness 45 μ m.
- The Ge wafer suspension consists of 12 thin (∅6 μm) low-heat-conduction superconductive wires.
- On the rear side a small NTD Ge sensor $(2\times0.4\times0.3\text{mm})$ is glued.
- The thermal link is provided by a thin pure Ge slice.
- A low intensity 55Fe source facing the Ge wafer.
- The optical bolometer is adapted to the larger heat bolometer cavity with a silver coated copper diaphragm.


16.5 mK

Sensitivity: $6.6 \mu V/Mev$

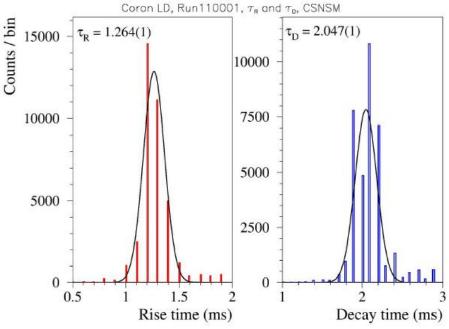
FWHM Baseline: 0.073keV

15.2 mK


Sensitivity: 2.559µV/Mev

FWHM Baseline: 0.082 keV

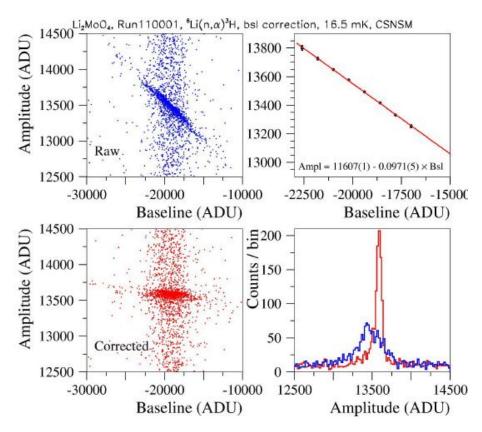
Light detector response

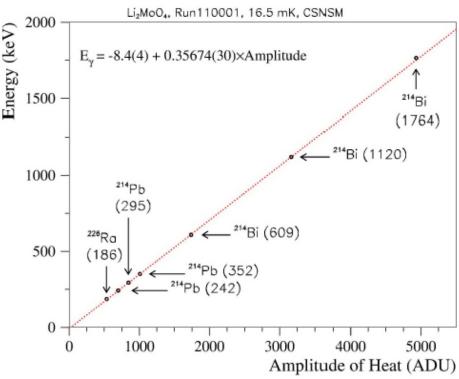

Outline

➤ Types of pulses depending from the energy

➤ Rise-time and decay-time analysis Energy region: 5.9 keV ⁵⁵Fe peak

Conclusion and prospective



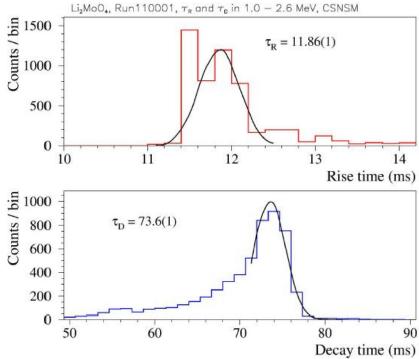

No energy dependence of pulse shape is observed.

T	16.5mK	15.2mK
$ au_{ m rise}$	1.264 ms	0.914 ms
$ au_{ m decay}$	2.047 ms	1.342 ms

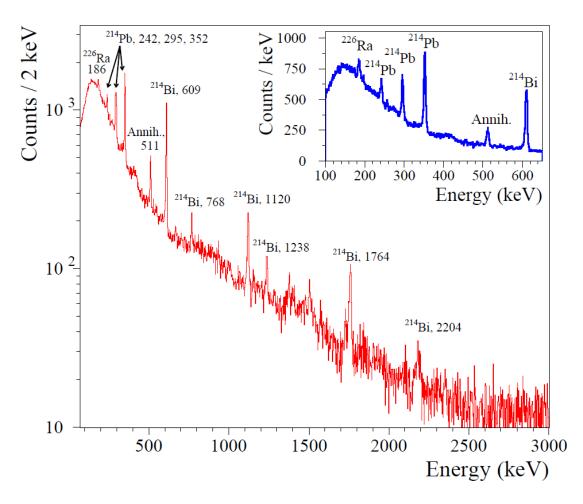
Li₂MoO₄ Calibration

The stabilization in temperature was achieved using the signals of neutron capture which provide a stable signal at 4.78 MeV

The calibration was made using the environmental radioactivity. The most dominant signals come from the Rn chain


Li₂MoO₄ detector response

> Types of pulses depending from the energy


Energy dependence of pulse shape is observed.

➤ Rise-time and decay-time analysis Energy region: 1-2.6 MeV

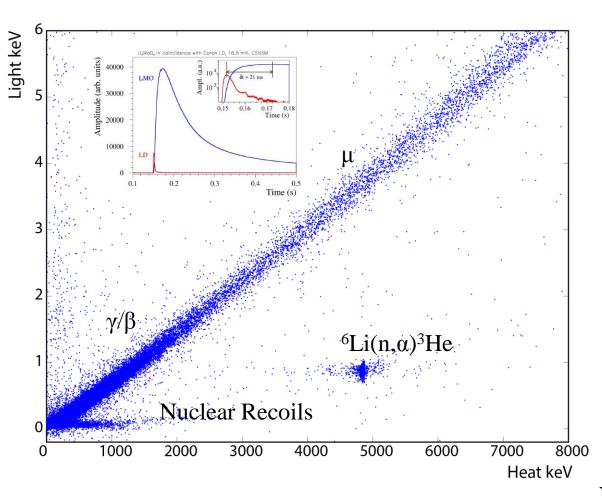
T	16.5mK	15.2mK
$ au_{ m rise}$	11.86 ms	10.04 ms
$ au_{ m decay}$	73.6 ms	75.0 ms

Li₂MoO₄ Total background

Energy spectrum measured in the Orsay aboveground set-up over 118 hours.

The observed lines belong to the ²³⁸U radioactive chain and are all due to environmental radioactivity.

FWHM:


Baseline $\rightarrow 2.0 \pm 0.1 \text{ keV}$

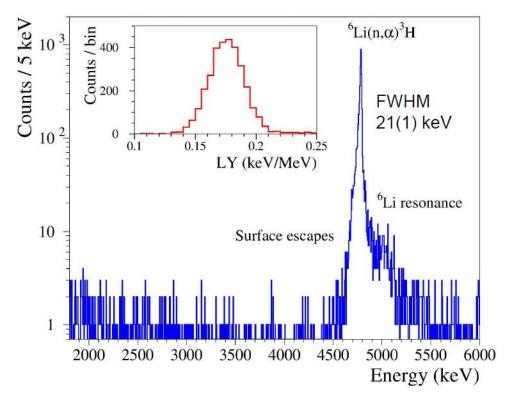
 214 Pb @ 295 keV → $^{4.4 \pm 0.4 \text{ keV}}$

 214 Pb @ 352 keV → $^{4.2 \pm 0.2 \text{ keV}}$

 214 Bi @ 609 keV → 5.2 ± 0.3 keV

Scatter plot

In the scatter plot, it is possible to recognize three main structures.


- •A prominent fully populated band contains γ , β and cosmic muon events.
- A cluster of points with a much lower light emission with respect to the main band contains neutron absorption.
- ■A modestly populated band at low energies (extending up to ~ 2 MeV), without appreciable light emission contains nuclear recoils induced by fast neutrons.

 $LY_{\gamma/\beta} = 0.7 \; keV/MeV \; @ \; 3MeV$ $LY_{n\text{-capture}} = 0.17 \; keV/MeV$

Neutron spectrum background

General overview

Energy spectrum of massive charged particles measured 118 hours requiring that the light yield be less than 0.25 keV/MeV. In fact, the isotope ⁶Li, which has a natural abundance of 7.5%, has a very high cross section for thermal neutron capture (of the order of 940 barns).

The light yield at the α -triton peak (LY 0.17 keV/MeV) is significantly lower than that of fast electrons. The corresponding quenching factor of the mixed -triton events with respect to events is about 23% at ~ 4.8 MeV.

Conclusion and perspective

Conclusion

A low-temperature test of a scintillating bolometer based on a Li₂MoO₄ cylindrical crystal - with a size of $\bigcirc 40 \times 40 \text{ mm}$ - was performed at ~ 15 mK in an above ground pulse-tube cryostat housing a high-power dilution refrigerator in CSNSM (Orsay, France).

- •Excellent performance of the detector in terms of energy resolution and α/β separation power.
- •Positive indications of a good radiopurity of the tested sample.
- ■A clear thermal neutron capture peak was observed from 6 Li(n, α) 3 He reaction.

Perspective

To study its radiopurity a long underground run at the Gran Sasso National Laboratory in Italy was performed

An R&D of Li₂MoO₄ crystal scintillators is in progress.

The development of enriched Li₂¹⁰⁰MoO₄ scintillating bolometers is in progress.