

Scintillating bolometers of LMO in LNGS

Fourth and final general meeting of the ISOTTA project

Luca Pattavina

luca.pattavina@lngs.infn.it

December 2014, CSNSM-Orsay

Outline

- Intro
- LMO bolometric performance
- Particle identification (heat & light)
- LMO background measurement
- Scintillation properties
- applications

Scintillating bolometers

When a **bolometer is an efficient scintillator** at low temperature, a small but significant fraction of the <u>deposited energy is converted</u> <u>into scintillation photons</u> while the remaining dominant part is detected through the heat channel.

Double signal read-out:

Heat: absorber+thermometer

Light: PM / SiPM / bolometer

A. Alessandrello et al., Nucl. Phys. B 28 (1992) 233-235

QF: ratio of the light signal amplitudes induced by α and an β/γ particles of the same energy.

Light detectors (LD)

Light detectors (2)

Light detector

HPGe 40 x 0.05 mm Ge disk

Cryostat

Low-microphonic noise: two decoupling stages

Low-noise electronics: Cold pre-amplifier @ 110K Amplifier @ 300K

N. Coron et al., Opt. Eng. 43 (7) 1568-1576

Light detectors (3) counts / 0.01 Entries 18206 Mean 5.959 RMS 0.2426 100 Integral 3748 χ^2 / ndf 152/139 A_exp 0.8651 ± 0.2126 1.521e-07 ± 3.581e-01 b_exp Calibration source ⁵⁵Fe: 62.68 ± 1.38 А 80 mean 5.886 ± 0.002 55 Mn K_{α} – K_{β} σ 0.1321 ± 0.0021 BRRatio 0.503 ± 0.000 PosRatio 0.9981 ± 0.0000 60 BRRatio2 0.1769 ± 0.0000 PosRatio2 1.1 ± 0.0 40 20 5000* mV²/Hz 0 0 0 0 10^{-2} 5.8 5.4 5.6 6.2 6.8 7.2 6 6.4 6.6 Energy sigma @ 5.9 keV = 132 eV 10-6 10^{-7} 10^{-8} sigma @ 0 keV = 16 eV 10-9 Noise - chan. 0018 10^{-10} original Impressive performance, filtered 10-11 comparable to TES-based LD norm. avg. pulse 10-12 10-13 10^{3} 10^{2}

6

Frequency [Hz]

Li_2MOO_4

Candidate: ¹⁰⁰Mo

LMO energy resolution

245 Q

250

230

235

240

255 Energy [keV]

0.5

1.5

2.5

2

Bnergy [keV]

22E

20

LMO n calibration

counts / 10

LMO Pulse Shape Analysis

Particle identification is also possible looking at shape of heat pulses (like all the Mo-compounds)

Discrimination potential @ 5MeV (lack of low energy α @ DBD $Q_{\beta\beta}=$ 3MeV):

 $DP(E) = \frac{\left|\mu_{\alpha}(E) - \mu_{\beta\gamma}(E)\right|}{\sqrt{\sigma_{\alpha}^{2}(E) + \sigma_{\beta\gamma}^{2}(E)}}$

 μ : central value of the distribution σ : width of the distribution

Heat channel is enough to perform a full particle ID!

LMO LY discrimination

Looking at the light channel:

No strong correlation

Assuming a O correlation between the two variables with the strongest DP, we obtain:

 $DP_{LY} \oplus DP_{OF_{TVR}} = 35 \sigma$

-> <u>Full identification of</u> <u>particle interaction</u>

LMO background

LMO LY & QF_{α}

measured LY(^{210}Po) = 0.13±0.02 keV/MeV_{ee} measured LY(α +³H) = 0.16±0.01 keV/MeV_{ee} measured LY(β / γ) = 0.67±0.01 keV/MeV_{ee} measured LY(n) = 0.06±0.02 keV/MeV_{ee}

 QF_{α} @ 5.3 MeV = 0.20±0.03

LMO Comparison

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: July 2, 2013 ACCEPTED: September 4, 2013 PUBLISHED: October 2, 2013

Development of a Li₂MoO₄ scintillating bolometer for low background physics

inst

L. Cardani,^{*c,d*} N. Casali,^{*a,b*} S. Nagorny,^{*a*} L. Pattavina,^{*a*,1} G. Piperno,^{*c,d*} O.P. Barinova,^{*e*} J.W. Beeman,^{*f*} F. Bellini,^{*c,d*} F.A. Danevich,^{*g*} S. Di Domizio,^{*k,j*} L. Gironi,^{*j,k*} S.V. Kirsanova,^{*e*} F. Orio,^{*d*} G. Pessina,^{*j,k*} S. Pirro,^{*a*} C. Rusconi,^{*k*} C. Tomei,^{*d*} V.I. Tretyak^{*g*} and M. Vignati^{*d*}

OLD	NEW
m = 33 g	m = 150 g
$QF_{\alpha}(^{210}Po) = 0.42$ $LY_{\beta/\gamma} = 0.43 \text{ keV/MeV}$	QF_{α} (²¹⁰ Po) =0.20 $LY_{\beta/\gamma}$ =0.67 keV/MeV
²³² Th: <94 uBq/kg ²³⁸ U: <107 uBq/kg ²²⁶ Ra: <107 uBq/kg	²³² Th: <19 uBq/kg ²³⁸ U: <19 uBq/kg ²²⁶ Ra: <8.4 uBq/kg
DP _{LY} (1-2.3 MeV)=3	DP _{LY} (3.5-7 MeV)=30
FWHM @ ⁴⁰ K=4keV	FWHM @ ⁴⁰ K=4keV

Solar axions search

Detection of ^{7}Li solar axions by means of resonant absorption on analogue targets in the labs.

LMO application axions

If we reverse the equation:

CONCLUSIONS

- Promising candidate for DBD search of $^{100}\mathrm{Mo}$:
 - => excellent particle discrimination
 heat & light channels
 - => excellent intrinsic radiopurity
 better material selection (K40 & Ra226)
 - => good size
- High efficiency in neutron detection
- => applications in WIMP searches
- Good candidate for ⁷Li solar axions

