

CALDER

CRYOGENIC LIGHT DETECTORS FOR NEUTRINO AND DARK MATTER SEARCHES

Angelo CRUCIANI
Sapienza, University of Rome

ISOTTA meeting - Orsay 2-December-2014

CALDER collaboration:

Sapienza University of Rome: KID Design, Cryogenic tests, Data Analysis.

E. Battistelli, F. Bellini, L. Cardani, N. Casali, C. Cosmelli, A. Cruciani, P. de Bernardis, S. Masi.

Istituto Nazionale di Fisica Nucleare: Tests at Gran Sasso Underground Lab.

C. Bucci C. Tomei and M. Vignati.

Consiglio Nazionale delle Ricerche: Detector fabrication.

M.G. Castellano and I. Colantoni.

Università degli studi di Genova: Electronics and DAQ. S. Di Domizio.

Particle ID with Čerenkov

Discrimination of \alpha interactions in CUORE: MeV β s (signal) emit a little Čerenkov light, α s (background) do not.

The light is visible but event by event discrimination is not possible: the noise of the light detector is high (100 eV RMS) compared to the Čerenkov signal (100 eV).

J. W. Beeman, M. Vignati (c.a.), et al., "Discrimination of α and β/γ interactions in a TeO₂ bolometer," Astropart. Phys. 35 (2012) 558.

Signal/Noise of light detector

Requirement for an efficient rejection

Kinetic Inductance Detectors (KIDs)

new technology invented at Caltech (P. Day et al., Nature, 425 2003)

- Excellent reliability
- Easy fabrication
- Easy readout: FPGA and 1 cold amplifier, high multiplexing

KID: Working principle

Cooper pairs (cp) in a superconductor act as an inductance (L). Absorbed photons change cp density and L.

High quality factor (Q) resonating circuit biased with a microwave (GHz): signal from amplitude and phase shift.

Multiplexed readout of a KID array

O. Bourrion et al, JINST 6 (2011) P06012.

NIKA and ARCONS

first successful implementations

NIKA is a camera devoted to millimeter wave astronomy, developed by a collaboration, lead by Institut Néel (CNRS) et installed at the IRAM telescope

Monfardini et al., APJS 194 (2011)

ARCONS is a 2024 pixel spectrophotometer for optical and near-IR astronomy, developed by University of Santa Barbara

Mazin et al., PASP 123 (2013)

Our goals

	State of the art	goal	
Area	few mm ²	5x5 cm ²	difficult
ΔE [eV RMS]	< 1	< 20	achievable
Twork [mK]	80	10	pro

Problem of direct photon detection: area cannot be covered with 10³ KIDs, too demanding for electronics (in the future we will need 10³ light detectors).

Indirect detection: use a few KIDs (N_K =10-20) and athermal phonons in the substrate as mediators:

See also: Swenson et al., APL 96 (2010) and Moore et al, APL 100 (2012)

Scientific challenge

New problem: loss of phonon collection efficiency (ε) through the supports and via thermalization:

$$\frac{1}{\epsilon} = 1 + \frac{1}{N_K A_K p_K} \left(A_{supp} \, p_{supp} + A_{sub} \frac{t_{sub}/v_{sound}}{\tau_{thermal}} \right)$$

Substrate R&D: maximize transmission to the KIDs (p_K). Minimize support area (A_{supp}), transmission prob. to supports (p_{supp}) and substrate thickness (t_{sub}).

KID R&D: ε loss compensated by KID sensitivity:

$$\Delta E \propto \frac{1}{\epsilon} \cdot T_c \sqrt{\frac{N_K A_K}{QL}}$$

- 1) Maximize resonator (and consequently film) quality factor: $Q > 10^5$.
- 2) High inductivity (*L*) and low T_c superconductors thanks to $T_{work}=10$ mK:

	Al	TiN (non stoich.)	Ti+TiN (stoich.)	Hf
T _c [K]	1.2	0.9	>0.4	0.12
L [pH/square]	0.5	3	30	3

Rome Lab

single cryogenic amplifier

Nixa: electronics board developed at LPSC (Grenoble)

2nd Prototype

- Single pixel area: 2.4 mm².
- 4 pixels coupled to the same feed line.
- Frequency: 2.6 GHz (spacing 15 MHz).
- 40 nm Aluminum lithography on 300 um Silicon substrate

Q - factors

# reso	Simulated Q [k]	Measured Q [k]
1	8.0	27.5
2	8.0	2.0
3	8.0	7.0
4	8.0	6.5

Results – 1

⁵⁷Co source (7 and 14 keV X-rays)

Optical fiber pulsed with LED

Results 2 – Baseline energy resolution

RMS of noise:

KID1 = 117 eV

KID2 = 1.3 keV

KID3 = 412 eV

KID4 = 340 eV

Results 3 – Single pixel energy spectrum

Effect of BiComponent Filter on the detectors.
Integral vs Filtered Integral

Next Steps

1) Increase Q-values with Al

Q [k]	1pix resolution [eV]	4pix resolution [eV]	Difficulty
50	90	180	Easy
100	60	120	Medium
200	40	80	Hard

2) Use different metals: TiN coming soon

expected improvement of resolution: 2 * 4 * 2 = 16

Tc Lk Eff

3) Maximize efficiency, using membranes and/or different substrates