4° ISOTTA general meeting

Neganov-Luke assisted Light Sensors

LLD (Luke Light Detector) for his friends

Michele Mancuso

2 December 2014

Outline

- General overview
 - Motivation
 - Basic principle of Neganov-Luke effect
 - Neganov-Luke assisted Light Sensors
- Measurement and results
 - Low temperature set-up
 - Detector response
 - Amplification
 - Cherenkov light from TeO₂ crystal
- Conclusion and prospective

Motivation

$$LY_{\beta/\gamma} \neq LY_{\alpha} \neq LY_{nuc-rec}$$

The simultaneous detection of heat and light allows to separate γ and β particles form α particles and nuclear recoils

Increasing the sensitivity of the light detector allows to disentangle the different bands at lower energy.

- → Crucial for DM and solar axion searches
- → Detection of Cherenkov light from non scintillating crystal

Basic principle

Photons

- \rightarrow creates e-h pairs
- → e-h pairs are drifted by electric field

General overview

- → Phonon emission while e-h pairs drift
- → Amplification

$$W_{gen} = Q \int_{o}^{d} \vec{E} \cdot d\vec{l}$$

$$E_{heat} = E(1 + \frac{qV}{\epsilon})$$

$$E_{heat} = E(1 + \frac{qV}{\varepsilon})$$

4° ISOTTA general meeting

The detector

The Neganov-Luke assisted photon sensor was developed at CSNSM, France. The aluminum electrodes were deposited on bare Ge by evaporation using a shadow mask

- Copper holder
- High-purity Ge plate with size of ⊘50 x0.20mm³
- Mechanical coupling is provided by teflon clamps
- •The readout was made by 3x1.5x0.6 mm³ NTD Ge thermistors
- ⁵⁵Fe source was used to stabilize the detector response and to compare the results from different runs
- Hamamatsu LED provides the light signals for the characterization

Even and odd aluminum annular electrodes respectively connected by bonding aluminum wires. V_{bias} is applied within the two sets.

Cooling down

The bolometric response was studied in the range of 15-17 mK

Final working point was selected as:

Temperature: 16.7mK

Acqusition Rate: 20000 Hz

Voltage range: -1.0 to +1.0

Applied Bias : 5.000 V

Load Resistor : 1.000 Gohm

Applied Gain : 1403.000 V/V

Besset cut-freq: 675.000 Hz

Measurements

Outline

- Iron calibration
- Study LED pulse
- Study of Luke effect
- Study the reduction of amplification due to space-charge trapping
- Cherenkov light measurement 53V with TeO₂ bolometer

We have only 2-3 days to perform the detector characterization

Study the detector response of LED pulses

LED Bias =
$$810 - 900 \text{ mV}$$

R = $1 \text{ k}\Omega$
pulse width = 1 ms

The purpose was to use the energy resolution at different LED bias to obtain the number of photon emitted for certain bias

The total σ is given by:

$$\sigma_{tot}^2 = \sigma_{ph}^2 + \sigma_0^2$$

Where σ_{ph} is:

$$\sigma_{ph} = a\sigma_N = a\sqrt{N} = \sqrt{ax}$$

x is the signal amplitude and a is equal to sensitivity $\times E_{ph}$

$$x = aN$$

Study the detector response of LED pulses

The signals provided by LED+pulser show a clear dispersion with a well defined pattern.

Impossible to reconstruct the number of photons in function of bias

In the future tests we planed to introduce an optic fiber in the system

> ...But we can use this defect of the LED for a first test of the amplification capability of the detector.

Amplification by drifting charges

By applying on the grids different biases in the range 0-53 V it is possible to see the amplification not only of the signal but also of the LED pattern.

- Moreover the LED response is not so reproducible as as expected.
- The signal/ σ_{tot} for those reasons does not improve.

4° ISOTTA general meeting

Amplification by drifting charges

Despite these problems it is possible to verify that the detector behaves compatibly with the Neganov-Luke theory.

Measerement and results

0.2

0.25

Gain over noise

It is possible to evaluate the amplification capability of the detector by evaluating the gain over noise ratio at different biases:

$$\frac{\left\langle Amplitude \right\rangle}{RMS_{baseline}}$$

Titolo

No apreciable degradation in amplitute after more then 3 hours at 53.17 V

Cherenkov measurement

- •A small bolometer of TeO₂ was coupled to the LLD.
- •The detector was calibrated with a Th souce

The scatter plot shows the light signal recorded in coincidence with the events occurrend in the TeO₂

A Cherenkov measurement with a TeO₂ crystal is ongoing at the LNGS.

Conclusions and prespectives

Conclusion

The Neganov-Luke assisted photon sensor was developed at CSNSM, France. A low-temperature test was performed at ~ 16 mK in an aboveground pulse-tube cryostat housing a high-power dilution refrigerator.

- Excellent performance in agreement with the theory.
- A gain over noise ratio of ~ 19 was achieved with a bias of 53.17 V.
- No appreciable degradation in amplitute due to space charge trapping after more then 3 hours with 53V was observed.

<u>Perspective</u>

In the future tests we planed to introduce an optic fiber in the system

A Cherenkov measurement with a TeO₂ crystal is ongoing at the LNGS.