CALORIMETRY AT DØ with the French

Calorimeter hardware and software contributions for Run II

What it needs to get the thing running... Highlights and break-troughs

Certainly a biased selection – sorry!

Thanks for help and contributions!

U. Bassler 13/10/2008

D0-France-Fest

First you need:

a nice calorimeter!

55000 channels Uranium/liquid Argon

Fine segmentation:

5000 readout towers ($\Delta\eta \times \Delta\phi = .1 \text{ x } .1$) 1200 trigger towers ($\Delta\eta \times \Delta\phi = .2 \text{ x } .2$) 4 em layers (2, 2, 7, 10 X0), "shower-max" (EM3): .05 x .05 4/5 hadronic layers (FH + CH)

Hermetic with full coverage $|\eta| < 4.2 \ (\theta \approx 20), \ \lambda int > 7.2 \ (total)$

To get it read out: 55k dual FET PreAmps 23k Switch Capacitor Arrays (SCA) with 8M storage cells on 1200 Base Line Subtraction (BLS)-boards crate controllers with timing jumpers, ADC cards, timing and control cards...

Then you need:

Liquid Argon purity

Online calibration

Understanding pulses

Systematic effects can render the establishment of the calibration somewhat more difficult :

Pulse reflection on calorimeter cell has a big effect on hadronic pulse shape

- \rightarrow trying to understand the pulses with
- Reflection measurements
- Waveform measurements
- Comparison of measured pulse shape from data and pulser

→Simulation

Comparison of measured pulse shape and corresponding ADC counts allowed to pin down the "resistor inversion" and its scaling factor on first W-peak!

Non-linearity

 ADC to energy conversion with an universal function for SCA non linearity
 ⇒ residuals better than +/-5 ADC counts on the whole range for both gains Saturation effects in SCA cells produced a non linearity in the energy reconstruction

- Comparison of residuals of a linear fit after appropriate scaling for gain ×1 and ×8
- below ±10 ADC counts (<0.3%) above ~2 GeV
- non linearity similar for all channels

also indispensable!

φ-intercalibration

Electronics calibration is not sensitive in variations on the calorimeter cells

Beams are not polarized, therefore the energy flow has no azimuthal dependence \rightarrow equalize the energy response in one η -ring (depending on cell depth)

Difficulty: trigger should not bias the sample \rightarrow low L1 trigger threshold; yet take enough data \rightarrow "parasitic mode"

Module 17 dropped during the calorimeter construction in mid 1980's → stable response over decades!

Then: reconstruction and simulation!

getting the events!

L1 CAL trigger upgrade
allow for 132ns bunch x-ing: digital filtering
Improve resolution and turn on curves: sliding window

«geometric » corrections

3.2

€^{2.8} 0 2.6

EMPart 2.2

2 WCKine.E 1.8 1.6 1.8

> 1.4 1.1

> > -1

ш

Correction derived from Monte Carlo

- put reconstructed energy to "particle energy"
- determined as function of η and energy
- → increase with improved dead material description in p17 Monte Carlo – decrease of Z-resolution!

...a long way not only to the Z

once you have it, it stays!

π**X0=0**.2

Z calibration for two run periods over one year In RunII a remains stable!

Em-id: H-matrix etc.

Identification of isolated em-clusters based on shower shapes:

- H-matrix based on 7/8 variables built from energy deposits in emlayers
- For electrons, track cluster match is required in addition

•CPS calibrated

track-match Piobability distribution:use new parameters vs. standard

Noise!

Ring of Fire Noon Noise Purple Haze

Run 205428 Evt 2055028

But also: Energy sharing *Tower 2* Cable swap

Data quality control

Nada and Tea for Two

Standard noise suppression based on pedestal measurement : 1.5σ online suppression and 2.5σ offline suppression

NADA: searching for isolated cells above threshold ⇒ Good efficiency (>90%), with low mis-id (<1%)

T42:

 Topology dependent noise suppression keeping only cells > 4 σ and their direct neighbors

What MET would you like?

Missing E_T is in principle simple, but how to choose the calorimeter objects and and calibrate them, treate noisy parts of the calorimeter, and calibrate unclustered energy

Using MET

MET has been a very useful tool for the Run selection and Data monitoring!

And MET has been used to study the 0suppression threshold

Jet id

Define a jet algorithm -

- Infrared safe
- Split and merge strategy
- Determine thresholds
- Define what a good jet means!

The new jet ID cuts for p17 data are: A jet passes the new maximal CHF cuts if:

- it has CHF < 0.4, or,
- it has CHF < 0.6 and $8.5 < |\eta_{det}| < 12.5$ (in the ECMH) and n90 < 20, or,
- it has CHF < 0.44 and $|\eta| < 0.8$ (central), or,
- it has CHF < 0.46 and $1.5 < |\eta| < 2.5$ (end cap excluding forward regions).
- A jet passes the new minimal EMF cuts if:
- it has EMF > 0.05, or,
- it has $1.3 > ||\eta_{det}| 12.5| + \max(0, 40 \times (\sigma_{\eta} 0.1))$ (in the No EM Gap).
- it has EMF > 0.03 and $11.0 < |\eta_{det}| < 14.0$ (in the No EM Gap), or,
- it has EMF > 0.04 and $2.5 < |\eta|$ (forward).
- A jet passes the new minimal $L1_{ratio}$ cuts if:
- it has L1_{ratio} > 0.5, or,
- it has $L1_{ratio} > 0.35$ and $p_T < 15$ and $1.4 < |\eta|$ (end cap), or,
- it has $L1_{ratio} > 0.1$ and $p_T < 15$ and $3.0 < |\eta|$ (forward), or,
- it has $L1_{ratio} > 0.2$ and $p_T >= 15$ and $3.0 < |\eta|$ (forward).

where $L_{1_{ratio}}$ is calculated excluding the massless gap energies from the precision (and L1) sum.

- and measure its efficiency

Before handling everything over to the JES group!

In case you missed...

and since..

Proposition de Participation à la Phase II de l'Expérience DØ à Fermilab

2.2

2.2

3

Institut des Sciences N. Marie Laure A

Centre de Physique des Pa Alain Bonissent, Marie Claude Cou Anne Ealet¹, François Etienne, D Elemer Nagy, François To

Laboratoire de l'Accélérateur Li Philip Bambade¹, Laurent Duflot, Jean Michel Jaffré, Pierre Pétra

Laboratoire de Physique Nucléaire et des Haute. Ursula Bassler, Gregorio Bernardi, Did. Philippe Schwemling¹.

Résumé

Nous proposous de participer à la phase II de l'expérience D. Cette participation permettrait à des groupes français² de collabo gramme unique de physique vers l'an 2000. Elle porterait essentielk préparation à l'analyse et sur l'analyse elle-même, sur les thèmes de du top, la recherche de nouvelles particules au delà du modèle Stan. physique de la beauté. Elle serait aussi une bonne préparation à la au LHC. Elle bénificierait de la collaboration avec un groupe du DAPN Saclay³.

⁸B. Bloch-Devaux, P. Bonamy, P. Le Du, C. Guyot, J.F. Laporte, L. Chevalier, A. Ph. Virchaux, A. Zylberstejn.

many French thesis have extended Calorimetry **Chapters** and you got : **Contributions & Conveners** in Construction, Commissioning, Calibration, **CALOP** and CALGO

¹Contribution envisagée à partir de l'an 2000

²La participation des signataires ci-dessus ne prendra effet qu'après l'accord de les, respectifs