Search for Higgs Beyond the Standard Model at Tevatron Run II

Boris Tuchming IRFU/SPP CEA-Saclay

Overview: -Introduction -Fermiophobic Higgs -SUSY Higgs

Searching Higgs beyond Standard Model

Standard Model

- simpliest explanation of EW symmetry breaking Standard Model Higgs mechanism with a SU(2)_L×U(1)_y doublet
- But Higgs is still unobserved
- Standard Model is not the ultimate theory
 - lack of explanation: Choice of gauge group (GUT ?), flavour structure, mass hierarchy, neutrino masses, baryogenesis, dark matter, gravity.....
 - Flaw: unstability of weak scale = naturalness
- We expect new physics at the TeV scale:
 - New physics likely means a different Higgs sector.
 - It is worth searching Higgs Beyond Standard Model: We could discover both Higgs and new Physics !!!
- In the following, search for neutral Higgs signatures
 - SUSY Higgs
 - Fermiophobic Higgs
- $h \rightarrow bb$: M. Michaut, Phd Thesis 2006 $h \rightarrow \tau\tau$: R. Madar, Phd Thesis 2011

Dzero France 10-25 years Boris Tuchming - Neutral Higgs Beyond SM at Tevatron

The Tevatron

Run IIa: (2002-2006) ~1.5 fb⁻¹ delivered per experiment Run IIb since june 2006 ~3.5 fb⁻¹ delivered per experiment

6 to 8 fb⁻¹ by end of run (2009 or 2010)

Tevatron

Fermiophobic Higgs.

May arise for example from 2 Higgs doublet model type I

- one doublet couples to fermions, the other doublet couples to boson only.
- Decays: ZZ, WW*, γγ

Production modes at Tevatron

- usual gg fusion via top-loop is suppressed
- associated production with vector boson
 - үү+Х,
 - WWW* -> 2 leptons (same charge)+ X

Vector Boson Fusion $qqH \rightarrow \gamma\gamma + X$

- via charged Higgs production
 - eg: qq-> hH+ -> hhW*+ -> $\gamma\gamma\gamma(\gamma)$ +X

Fermiophobic Higgs: WWW* final state

- Clear and clean signature
 - 2 like-charge isolated leptons p_{τ} >15 GeV
 - Missing transverse energy, \mathbb{E}_{τ} > 20 GeV
- **Background arises from**
 - WZ production
 - Drell-Yan + mismeasured charge (~10⁻³)
 - QCD, W+jets with fake leptons

estimated from MC estimate from data estimate from data

Boris Tuchming - Neutral Higgs Beyond SM at Tevatron Dzero France 10-25 years

WWW* limits

 Absence of deviation relative to background expectation can be interpreted in Fermiophobic model

Results are one order of magnitude above benchmark Fermiophobic model.

Fermiophobic Higgs: search for $\gamma\gamma$ at DØ

- Neural Network for γ/jet discrimination
 - Background from jj, γj, γγ mostly determined from data
 - no excess in γγ mass spectrum for L~1.1 fb⁻¹
 - Event counting in 10 GeV sliding mass window: limit as a function of M_{hf} and Br(h_F->γγ)

- Improve LEP limit by a factor of 4 for M_{hF}=120 GeV
- Need more data or analysis improvements to probe benchmark scenario
 - Can recycle more recent analysis searching for Standard Mode Η-γγ (2.3 fb⁻¹)

Fermiophobic Higgs: search for $\gamma\gamma\gamma(\gamma)$ at DØ

Boris Tuchming - Neutral Higgs Beyond SM at Tevatron

- 'Light' Higgs M_{hF}~40-80 GeV can escape search for h_F->γγ at LEP if VVh coupling is supppresed.
- 3γ signatures

Dzero France 10-25 years

- Look for excess of high pt photons
- small background arising from qq-> 3γ
- H₁>25 GeV bkg=1.1±0.2 DATA=0
- Production through charged Higgs is model dependent
 - limit as a function of M_H+, M_{hF}, tan(β)=v2/v1 (ratio of vev's)

SUSY Higgs at large tan(B)

- In MSSM 2 Higgs doublets (type II)
 - tanβ= v2/v1 ratio of vev's
 - 5 Higgs : 3 neutral (h,H,A) and 2 charged (H⁺,H⁻)
 - 2 parameters at tree level : (M_A, tan(β))
- At large tan(β): 2 neutral ~degenerated in mass with bb¢ coupling ~tan(β)
- cross-section enhanced by ~2 x tan² β (at leading order) relative to SM

9

DØ: hb(b) -> bbb(b) (large impact from DØ France)

- Selection:
 - 3 to 5 jets with p_T >20 GeV $|\eta|$ <2.5
 - 2 b-tag jet with p_T >25 GeV
 - 3 b-tag in final selection
 - trigger ε~60-70%
 - multi-jet conditions
 - b-tagging conditions (challenging)
- In first 1 fb⁻¹ of DATA

3,224/2,503/704 events for 3/4/5 jets selection

 Signal simulated by Pyhia, reweight events to match MCFM NLO kinematics

Challenge: modeling the background of hb(b) -> bbb(b)

Searching for a hbb signal

Dzero France 10-25 years Boris Tuchming - Neutral Higgs Beyond SM at Tevatron

Background systematics

- Much larger impact than signal uncertainty
- The normalization is unknown, only the uncertainties on the background shape matters:
 - bbb vs bbj fraction
 - bbb vs. bbj kinematic
 - bbb vs. bbj b-tag shape
 - b jet energy scale resolution
 - b-tag trigger (different efficiency for 2tag and 3tag events)

eg for M_A= 160 GeV background systematics decreases sensitivity by ~50%

MSSM Benchmark

- 2 parameters, (M_A , tan(β)) to describe SUSY Higgs sector at Leading Order
- hbb vertex receive large corrections from sbottom-gluino and stop-higgsino loop
- Five additional parameters due to radiative correction
 - M_{susy} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
 - M₂ (gaugino mass term)
 - μ (Higgs mass parameter)
 - M_{gluino} (comes in via loops)
- Two common benchmarks
 - Max-mixing Higgs boson mass
 m_h close to max possible value
 for a given tanβ
 - No-mixing vanishing mixing in stop sector \rightarrow small mass for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
x,	2 TeV	0
M2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

bbb(b) results

Interpret results in MSSM benchmark scenario:

- øbb coupling modified by SUSY loops
- also account for larger intrinsic width at large $tan(\beta)$

Dzero France 10-25 years Boris Tuchming - Neutral Huggs Degona Sim at revation

$\phi^{0} \rightarrow \tau \tau$ at large tan(β)

• Taus decay within the inner detector, ~17% to e, μ , ~65% to hadrons. Three channels used:

$$\begin{split} \tau &\to \mu \ \nu\nu + \tau \to \text{hadrons } \nu & \tau_{\mu}\tau_{h} \text{ channel} \\ \tau &\to e \ \nu\nu + \tau \to \text{hadrons } \nu, & \tau_{e} \ \tau_{h} \text{ channel} \end{split}$$

 $\tau \rightarrow e \lor v \lor \tau \rightarrow \mu \lor v$

 $\tau_e \tau_u$ channel

- At DØ, hadronic tau candidates are divided into 3 types:
 - Type 1: one track, calorimeter cluster without EM subcluster
 - Type 2: one track, calorimeter cluster with EM subclusters
 - Type 3: 2 or 3 tracks consistent with tau mass, calorimeter cluster
- Tau identification is based on Neural Network: Non-linear correlations between variables are taken into account Discriminating variables: Profile, Isolation, ...
- Dedicated energy correction: τ–energy scale

17

Dzero France 10-25 years Boris Tuchming - Neutral Higgs Beyond SM at Tevatron

DØ: (b)b ϕ° ->(b)b $\tau\tau$ at large tan(β)

- Look for high $p_T \tau_\mu \tau_h$ + jet
- First channel to use dedicated tau triggers
- Before b-tagging : background Z+jets and QCD

- Main background is top pair production and QCD after b-tagging
- Multivariate technique enhance S/B
- No significant excess above background expectation

MSSM results: tau channels

Conclusion

- Tevatron experiments are able to search for Higgs beyond Standard Model.
- Constraints have been obtained in the last years for Fermiophobic and MSSM Higgs production:
 - Improvement relative to LEP limit for Fermiophobic Higgs
 - Starting to probe region of interest $tan(\beta) < 40$ for MSSM Higgs
- More results are expected to come with
 - more data, thanks to Tevatron performance
 - combinations between channels and experiments
 - Latest news says that eg in SUSY, some phase space at tan(β) <30 could be excluded when combining, bbb, $\tau\tau$, b $\tau\tau$ channels from DØ and CDF.
 - Forseen analysis improvements at DØ:
 - better b-tagging
 - better jet momentum resolution
 - better tau-id and Electromagnetic identification
 - better trigger efficiency (oring of existing conditions)

Support slides

Projections

Projections for full 2010 dataset (2 experiments)

MSSM interpretation by-bbb

- Strongest limits for the m_h^{max} scenario with $\mu < 0$
 - Large sensitivity to µ and its sign through loop corrections:
 - Negative μ gives enhanced production
 - No exclusion below for m_h^{max}, μ>0.

Tau channel more sensitive and less dependent on MSSM scenario

$$\sigma(b\phi \to bb\bar{b}) = 2 \times \sigma(b\phi)_{SM} \times \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \frac{9}{(1+\Delta_b)^2+9}$$
$$\sigma(\phi \to \tau^+ \tau^-) = 2 \times \sigma(\phi)_{SM} \times \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \frac{(1+\Delta_b)^2}{(1+\Delta_b)^2+9}$$

$$\Delta_b = \frac{2\alpha_s}{3\pi} m_{\tilde{g}} \,\mu \,\tan\beta \,\times I(m_{\tilde{b}_1}, m_{\tilde{b}_2}, m_{\tilde{g}}) + \frac{\alpha_t}{4\pi} A_t \,\mu \,\tan\beta \,\times I(m_{\tilde{t}_1}, m_{\tilde{t}_2}, \mu) \,.$$

MSSM interpretation by \rightarrow bbb

Dzero France 10-25 years

Boris Tuchming - Neutral Higgs Beyond SM at Tevatron

backup CDF b-tag plots

