Predictions from Electroweak Precision Measurements

Klaus Mönig

- 1 Introduction
- 2 The data
- 3 Predictions in the Standard Model
- 4 Predictions beyond the Standard Model
- **5** Conclusions

1 Introduction

- The gauge sector of electroweak interactions is given by three free parameters e.g. $\alpha, m_{\rm Z}, G_{\rm F}$
- All other observables can be predicted
 - Expect loop corrections of order $\alpha \sim 1\%$
- The ew. precision data are much better than that
 - At loop level all other parameters of the model enter

Can use precision data to constrain unknown model parameters

Structure of the radiative corrections

- The three most precise measurements are used to fix the model $(\alpha, m_{\rm Z}, G_{\rm F})$
- The high energy data are then basically given by three more quantities
 - The partial widths of the lepton ($\Gamma_{\rm ff}$) give the total coupling strength of the Z so fermions (LEP (+ILC))
 - The asymmetries on the Z give the ratio of the Z vector to axial vector coupling (LEP, SLD (+ILC))
 - The W-mass is sensitive the the W-f couplings (LEP + Tevatron (+LHC, ILC))
 - In addition the top mass is needed because of its large loop effects (Tevatron (+ LHC, ILC))
 - (the difference between different fermions has little sensitivity to new physics)
- Some low energy parameters (g-2, $b \to s\gamma$) have additional sensitivity to models like SUSY

Parameterisation of radiative corrections:

$$g_{Af} \rightarrow \sqrt{1 + \Delta \rho_f} g_{Af}$$

$$\frac{g_{Vf}}{g_{Af}} = 1 - 4|Q_f| \sin^2 \theta_{eff}^f$$

$$m_W^2 = \frac{1}{2} m_Z^2 \left(1 + \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2}G_F m_Z^2} \frac{1}{1 - \Delta r}} \right)$$

Parameter transformation:

$$\Delta \rho_{\ell} = \varepsilon_{1}$$

$$\sin^{2} \theta_{eff}^{l} = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4\pi \alpha_{QED}(m_{Z}^{2})}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \times T = \frac{1}{\alpha} \left(\varepsilon_{1} - \varepsilon_{1}(SM) \right)$$

$$\frac{1}{1 - \Delta r} = 1 + 1.43\varepsilon_{1} - \varepsilon_{2} - 0.86\varepsilon_{3}$$

$$U = \frac{4\sin^{2} \theta}{\alpha} \left(\varepsilon_{3} - \varepsilon_{3}(SM) \right)$$

$$T = \frac{1}{\alpha} \left(\varepsilon_{1} - \varepsilon_{1}(SM) \right)$$

$$U = \frac{-4\sin^{2} \theta}{\alpha} \left(\varepsilon_{2} - \varepsilon_{2}(SM) \right)$$

Or alternatively:

$$S = \frac{4\sin^2 \theta}{\alpha} (\varepsilon_3 - \varepsilon_3(SM))$$

$$T = \frac{1}{\alpha} (\varepsilon_1 - \varepsilon_1(SM))$$

$$U = \frac{-4\sin^2 \theta}{\alpha} (\varepsilon_2 - \varepsilon_2(SM))$$

2 The Data

Z-lineshape

Energy dependent cross section for leptons and hadrons

 $m_{\rm Z}, \Gamma_{\rm Z}, \Gamma_{\ell}, \Gamma_{\rm had}$

Z asymmetries

- Several asymmetries on the Z: A_{FB}^{ℓ} , A_{FB}^{b} , A_{LR} , \mathcal{P}_{τ} ...
- ullet All sensitive to $\sin^2 \theta_{eff}^l$
- Most precise $(A_{\rm FB}^{\rm b}, A_{\rm LR})$ differ by about 3σ
- No explanation for this if new physics only in loops

W-mass

- \bullet Sensitive to W-couplings in conjunction with $G_{\rm F}$
- LEP: Direct reconstruction mainly from semileptonic channel (statistics limited)
- Tevatron: transverse mass, systematics limited by Z-statistics

top-mass

- Enters only in loops
- However large effects due to quadratic dependence
- Few GeV precision needed

Other observables

- $\alpha(m_Z^2)$: running of α from e⁺e⁻ cross section at low energy to account for QED corrections
- Some other observables with smaller sensitivity

3 Predictions in the Standard Model

- All data are fit with $m_{\rm H}$ and α_s as unconstrained parameters (+ few technical fit parameters to account for correlations)
- Theory predictions are complete 2-loop
- Overall agreement with the SM is good $\chi^2/\text{ndf} = 17.3/13$ prob $(\chi^2) = 18\%$

 $m_{\rm H} < 200 \, {\rm GeV}$ strongly favoured by the data

This statement gets strengthened if combined with the direct searches

The role of the Tevatron

Tevatron contribution: $m_{\rm W}$, $m_{\rm t}$

- m_{W} : dropping Tevatron m_{W} doesn't change errors significantly
- m_t : dropping m_t almost triples the log m_H error, improving m_t doesn't help at the moment

4 Predictions beyond the Standard Model

SUSY

- SUSY is a fully calculable theory, so similar fits can be done
- SUSY is a decoupling theory
 - ⇒ heavy SUSY looks exactly like SM
- ◆ High energy data are consistent with the SM with a slight preference to SUSY
 ⇒ no meaningful constraints are possible

Recent fits add new observables:

- $g_{\mu} 2$: if hadronic vacuum polarisation is taken from e⁺e⁻ $\sim 3\sigma$ from SM, favouring light SUSY (however if taken from τ -decays much more consistent with SM)
- Dark matter density: Assuming that LSP accounts for all dark matter favours light SUSY
- $BR(b \to s\gamma)$ is 1σ above SM \Longrightarrow small pull towards light SUSY
- Result: relatively low m_0 , $m_{1/2}$ at moderate $\tan \beta$

Model independent approach

- STU parameters parametrise loop effects in a model independent way
- Most models predict U=0, so this constraint is often used
- $\bullet \sin^2 \theta_{eff}^l$ gives narrowest band
- Γ_{ℓ} ideal complement, however of limited precision
- $m_{\rm W}$ important additional constraint

- In the SM of course the $m_{\rm H}$ limit is found back
- However if news physics can be arrange to provide the right ΔT and ΔS a heavier Higgs can easily be accommodated
- Example: 4th generation with $m_U = 400 \,\text{GeV}$, $m_D = 325 \,\text{GeV}$, $m_H = 300 \,\text{GeV}$ well consistent with precision data

6 Conclusions

- The SM is still consistent with the precision data
- Inside the SM a light Higgs is strongly preferred
- Light SUSY is favoured by some low energy observables
- In more general models a heavier Higgs can be compensated if the new free parameters are adjusted accordingly