LSDMA JUlich: Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014

The ACQTt data format

AMS-02 data flow

AMS-02 records ~ 15.000.000.000 cosmic-ray events per year

— NASA White Sands
B e 23 /l// ,

Permanent storage @ CERN .
~ 40 TB raw data / year _
Data reconstruction @ JSC
~ 350 TB data / year

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 2

AMS-02 computing overview

Raw data stored at CERN contains the measurements of all
,active channels" in the detector

The raw data is reconstructed using the AMS offline software
and high-level reconstruction algorithms are applied
(track finding, etc.)

The reconstructed data is stored using the standard file format
iIn high-energy physics: ROOT trees.

20 minutes AMS data == one run, spanning at least one
physical file (~ 8 - 12 GB)

Each run contains N events, where an event contains all
necessary information for the physics analysis

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014

Replacing ROOT treese

Design of ROOT I/O dates back to 1990s, without Parallel |/O,
large scale clusters in mind

Analysis with OpenMP / MPI cumbersome and inefficient.
Not officially supported. No MPI parallel I/O possible

Wishlist for a new high-energy physics data format

* Inherently scalable, from laptop to large-scale cluster
* Fine-grained control over data layout on disk

e Constant memory usage while processing file

e Both Serial I/O and Parallel I/O should be possible

e Backwards compatible (just like ROOT trees)

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 4

ACQT files

ACQTt files, developed since 2012 in Aachen to overcome the
limitations of the ROOT trees used for the AMS physics analysis

File header

ACQt file
uint32 - identifier

, , File Header
uint32 - version

uint32 - nr. of events Run Header Chunk ~ 5 MB

Chunk T | —_

—_—
i uint32 - chunk size

Run header ChunkN | —" compressed data
User defined

uint32 - nr. of events

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 5

ACQt chunks

Each ACQt chunk contains N events as zlib compressed data

Chunk ~ 5 MB

uint32 - nr. of events Event.idl:

uint32 - chunk size [Description]
Namespace = AC
compressed data Class = Event

Members =\
\\\ AC: :EventHeader fEventHeader
ParticlesVector fParticles
Compressed dOTV AC::Trigger fTrigger

Event |

AC: : TOF fTOF
AC: :ACC fACC
AC: :TRD fTRD

Event N

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 6

ACQTt IDL files

All classes contained in the Ac: :Event are described with their
own IDL file

A helper utility generates C++ code covering the class member
initialization, declaration as well as serialization/deserialization

No need to deal with byte-order, alignment, padding manually.

No need to remember boiler-plate code to serialize/deserialize
data. ACQt auto-generates all necessary C++ code.

Easy to maintain and understand by non C++ professionails.
All it takes to change the data format is:

e Alter IDL file
e Add/remove accessor from C++ class

e Recompile

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 7

ACQTt versioning support

Explicit version control for each variable in each class

ECALShower.idl:

[Description] Removed in

Namespace AC ACQt 5.9.0
Class ECALShower

Members \
UInt t fStatus Added in
UShort t fNumberOfHits ACQft 5.9.4
[590-Float t fDepositedEnergy]
[594+Float t fEnergyAtlCMRatio] Added in
Float t fEnergyAt3CMRatio ACQt 5.9.1

——

[591 593Float t fOldEnergyScale] Removed in
ACQt 5.9.3

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 8

Fixed-precision data support

A special type Ac: :Round indicates fixed precision data
AC: :Round fVar (LowBound | HighBound | Transformer | Bytes)

Examples: (from AC: : TOFBeta)

Mapping numeric range to 16 bit:
AC: :Round fInverseBetaUncertainty(-10.0 | 10.0 |

Mapping humeric range with franstormation to 16 bit:
AC::Round fBeta(-3.0 | 3.0 | Tanh3 Transformer | 2)
AC::Round fChi2(le-10 | 1lelO | Log Transformer | 2)

Philosophy: Every bit counts.

Strip down all variables to their intrinsic precision.

Don't waste disk space by serializihg numerical noise, e.g. using
a 64 bit double to store a temperature, which has steps in 16 bit

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014

9

Enforcing constant memory usage

All ACQT classes use custom vector-like data-structures, almost
providing source compatibility with std::vector from STL

Usage: WTF: :Vector<AnyType, InlineCapacity>

€.g. AC: :ECAL contains
typedef WTF: :Vector<AC: :ECALShower, 10> ShowersVector;

The underlying buffer of the vector is allocated on the stack,
reserving InlineCapacity objects of type AnyType

When exceeding the inline capacity, memory is dynamically
allocated on the heap as fallback (slow case)

Optimal usage never exceeds the inline capacity

Built-in benchmarking capabillities 1o detect exceeds

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 10

Performing AMS-02 analysis

Equipped with the ACQT files and a software framework we can
now perform analysis fully parallelized.

From each AMS ROOT file (8 - 12 GB) reduced ACQt files are
written containing only a small fraction of the original data
(~ 400 MB)

Any number of ACQt files can be merged info large Multi-ACQt
files, spanning up to several TB per file if needed.

The Multi-ACQXf files are intended for the actual physics analysis,
which typically requires lots of runs over the same data set

Multi-ACQt files combine the benefits of a dense data format
with the necessities for large-scale parallel I/O (large files!)

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 11

Serial I/O mode

One process analyzes one chunk after the other, sequentially
looping over the events in each chunk

Important analysis mode if time-order of event matters
e.qg. calibration of an AMS-02 sub-detector, etc.

Chunks: |01/02/03|04/0506/07/08/02/10/11/12/13{14/15/16/17{18/19/20|...| N

&

Pl

P1 = Process 1 (Single process)

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014 12

Parallel /O mode

Launch N MPI processes analyzing N chunks in parallel

Benefit from MPI Parallel I/O - coordinates access to the physical file
with the underlying file system

Inherently scalable from two processes up to thousands

Only limited by the size of the ACQt files (contained chunks)

Chunks: [01/02/03]04/05/06/07/08/02/10/11/12/13/14/15/16{17/18/19/20|...| N

&

P11 P2 | P3 oo o

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014

Summary

A dense file format was designed specifically to cope with the
difficulties in data processing and scalable solutions like MPI
Parallel I/O.

We can use the JUROPA cluster very efficiently now, compared
to our initial serial ROOT tree processing

Recently developed Multi-ACQYf files solve the issue of having
lots of small files (< 1 GB), resulting in performance
depredations on both Lustre and GPFS

Hybrid jobs (OpenMP + MPI) to allow to exploit multicore
environments for the actual data analysis, besides the I/O, are
under development.

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 27.03.2014 14

Thanks for your attention!

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 27.03.2014 15

