
LSDMA Jülich: Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

The ACQt data format

01.04.2014

!1

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen 01.04.2014

NASA White Sands

Data reconstruction @ JSC 
~ 350 TB data / year

Permanent storage @ CERN 
~ 40 TB raw data / year

TDRS  
~ 10 MBit/s

!2

! AMS-02 records ~ 15.000.000.000 cosmic-ray events per year

 AMS-02 data flow

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 AMS-02 computing overview

!3

! Raw data stored at CERN contains the measurements of all
„active channels“ in the detector

! The raw data is reconstructed using the AMS offline software
and high-level reconstruction algorithms are applied 
(track finding, etc.)

! The reconstructed data is stored using the standard file format
in high-energy physics: ROOT trees.

! 20 minutes AMS data == one run, spanning at least one
physical file (~ 8 - 12 GB)

! Each run contains N events, where an event contains all
necessary information for the physics analysis

01.04.2014

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Replacing ROOT trees?

!4

! Design of ROOT I/O dates back to 1990s, without Parallel I/O,
large scale clusters in mind

! Analysis with OpenMP / MPI cumbersome and inefficient. 
Not officially supported. No MPI parallel I/O possible

! Wishlist for a new high-energy physics data format

• Inherently scalable, from laptop to large-scale cluster

• Fine-grained control over data layout on disk

• Constant memory usage while processing file

• Both Serial I/O and Parallel I/O should be possible

• Backwards compatible (just like ROOT trees)

01.04.2014

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 ACQt files

!5

! ACQt files, developed since 2012 in Aachen to overcome the
limitations of the ROOT trees used for the AMS physics analysis

ACQt file

File Header

Run Header

Chunk 1

Chunk N

File header

uint32 - identifier

uint32 - version

uint32 - nr. of events

Run header

User defined

Chunk ~ 5 MB

uint32 - nr. of events

uint32 - chunk size

compressed data

01.04.2014

! Each ACQt chunk contains N events as zlib compressed data

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 ACQt chunks

!6

Event.idl: 
 
[Description]
Namespace = AC
Class = Event
Members = \
 AC::EventHeader fEventHeader
 ParticlesVector fParticles
 AC::Trigger fTrigger
 …
 AC::TOF fTOF
 AC::ACC fACC
 AC::TRD fTRD
 …

Chunk ~ 5 MB

uint32 - nr. of events

uint32 - chunk size

compressed data

Compressed data

Event 1

Event N

01.04.2014

! All classes contained in the AC::Event are described with their
own IDL file

! A helper utility generates C++ code covering the class member
initialization, declaration as well as serialization/deserialization

! No need to deal with byte-order, alignment, padding manually. 
No need to remember boiler-plate code to serialize/deserialize
data. ACQt auto-generates all necessary C++ code.

! Easy to maintain and understand by non C++ professionals. 
All it takes to change the data format is:

• Alter IDL file

• Add/remove accessor from C++ class

• Recompile
Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 ACQt IDL files

!701.04.2014

! Explicit version control for each variable in each class

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 ACQt versioning support

!8

ECALShower.idl: 
 
[Description]
Namespace = AC
Class = ECALShower
Members = \
 UInt_t fStatus
 UShort_t fNumberOfHits
 [590-Float_t fDepositedEnergy]
 [594+Float_t fEnergyAt1CMRatio]
 Float_t fEnergyAt3CMRatio
 [591_593Float_t fOldEnergyScale]
 …

Removed in
ACQt 5.9.0

Added in
ACQt 5.9.4

Added in
ACQt 5.9.1

Removed in
ACQt 5.9.3

01.04.2014

! A special type AC::Round indicates fixed precision data 
 
AC::Round fVar(LowBound | HighBound | Transformer | Bytes)

! Examples: (from AC::TOFBeta)  
 
Mapping numeric range to 16 bit: 
AC::Round fInverseBetaUncertainty(-10.0 | 10.0 | 0 | 2) 
 
Mapping numeric range with transformation to 16 bit: 
AC::Round fBeta(-3.0 | 3.0 | Tanh3_Transformer | 2) 
AC::Round fChi2(1e-10 | 1e10 | Log_Transformer | 2)

! Philosophy: Every bit counts. 
Strip down all variables to their intrinsic precision. 
Don’t waste disk space by serializing numerical noise, e.g. using 
a 64 bit double to store a temperature, which has steps in 16 bit 

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Fixed-precision data support

!901.04.2014

! All ACQt classes use custom vector-like data-structures, almost
providing source compatibility with std::vector from STL

! Usage: WTF::Vector<AnyType, InlineCapacity>  
 
e.g. AC::ECAL contains 
typedef WTF::Vector<AC::ECALShower, 10> ShowersVector;

! The underlying buffer of the vector is allocated on the stack,
reserving InlineCapacity objects of type AnyType

! When exceeding the inline capacity, memory is dynamically
allocated on the heap as fallback (slow case)

! Optimal usage never exceeds the inline capacity

! Built-in benchmarking capabilities to detect exceeds

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Enforcing constant memory usage

!1001.04.2014

! Equipped with the ACQt files and a software framework we can
now perform analysis fully parallelized.

! From each AMS ROOT file (8 - 12 GB) reduced ACQt files are
written containing only a small fraction of the original data 
(~ 400 MB)

! Any number of ACQt files can be merged into large Multi-ACQt
files, spanning up to several TB per file if needed.

! The Multi-ACQt files are intended for the actual physics analysis,
which typically requires lots of runs over the same data set

! Multi-ACQt files combine the benefits of a dense data format
with the necessities for large-scale parallel I/O (large files!)

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Performing AMS-02 analysis

!1101.04.2014

! One process analyzes one chunk after the other, sequentially
looping over the events in each chunk

! Important analysis mode if time-order of event matters 
e.g. calibration of an AMS-02 sub-detector, etc.

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Serial I/O mode

!1201.04.2014

P1

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 … N

P1

P1

t = t0: 

t = t1:
 
t = t2:

Chunks:

P1 = Process 1 (Single process)

…

! Launch N MPI processes analyzing N chunks in parallel

! Benefit from MPI Parallel I/O - coordinates access to the physical file
with the underlying file system

! Inherently scalable from two processes up to thousands

! Only limited by the size of the ACQt files (contained chunks)

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Parallel I/O mode

!1301.04.2014

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 … N

t = t0: 
!
t = t1:
!

Chunks:

…P1 P2 P3

…P1 P2 P3

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Summary

27.03.2014 !14

! A dense file format was designed specifically to cope with the
difficulties in data processing and scalable solutions like MPI
Parallel I/O.

! We can use the JUROPA cluster very efficiently now, compared
to our initial serial ROOT tree processing

! Recently developed Multi-ACQt files solve the issue of having
lots of small files (< 1 GB), resulting in performance
depredations on both Lustre and GPFS

! Hybrid jobs (OpenMP + MPI) to allow to exploit multicore
environments for the actual data analysis, besides the I/O, are
under development.

Nikolas Zimmermann - 1. Physikalisches Institut B - RWTH Aachen

 Thanks for your attention!

27.03.2014 !15

