

Module Concept in the Alpine Layout

LAPP ATLAS group meeting 12.11.2014

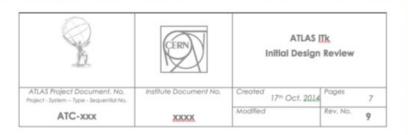
A. Rummler

Content

- Impressions from the AUW
- Lab planning
- Next steps

Impressions from the AUW

Mixed stuff


Swiss interests

- Strong interest: alternative layout to the one of the Lol.
 - Concept to be studied: 6 pixel layers (3 planar & 3 CMOS) + 4 strips
 - → Do we know how such a layout would perform? and its cost?
 - Being active on several fronts:
 - → ATLAS CMOS R&D ("full-size demonstrator" task force; testbeams)
 - → mechanics (barrel 5th layer concept under development: alpine-like, but modular: 38% less silicon area)
 - ⇒ simulation (simulation tool to quickly built and simulate geometries under development; use of 8000 cores for 300 days/year from April 2015 requested to Lugano computer center)
 - CMOS modules (just starting discussions with other Institutes)
- Interest on track-trigger (contributing to the FTK)

Giuseppe Iacobucci (U of Geneva)

Review Outcome

ATLAS ITK Initial Design Review

Prepared by:	Checked by:	Approved by:
L. Pontecorvo	& Cattain	P. Allport, B. Di Girolamo
information, contact : L. Ponte	aconso INITAL Roma I udas	des contessons@sem.ch

1. Distribution: EB and TC members, management of the project, participants to the review

- The reviewers congratulate
 the ITK community for the
 huge effort made to clearly
 define the ITK project, and in
 particular for the very good
 material provided during the
 review.
- A Report is in preparation,
 We hope to distribute it
 within ATLAS by the end of
 next week.
- Preliminary comments on each agenda item have been collected and a summary can be found in the next slides

The IDR report and reviewers recommendations

- The IDR document itself will be updated in the light of the reviewers recommendations and outstanding comments in CDS.
 - A notification will be sent to atlas-itk-general when this is complete.
- We received the reviewers summary very recently.
- It has now been circulated to PLs, authors, and activity coordinators.
 When the text is agreed and niggles sorted out it will be circulated to ATLAS.
- I would <u>very strongly urge</u> the groups (especially group leaders) to read the document.
- The conclusions and actions arising will be discussed at the next ITk-SC in December.

Stephen Mcmahon

ITk Pixel Design Group 1+2 (Monday 9:00)

TWP Conclusion and Plan Slide by Vitality Fadeyev

We are sampling BW vs material for one concrete version of the cable: twisted pair. Some of the cables are rather sophisticated (plated, multi-strand).

We have seen a strong improvement in the cable performance with the use of impedance-matching board and pre-emphasis.

There are indications of fast on/off-stave data transmission on TWP with use of 8/10B and pre-emphasis:

- 6.22 Gbps *) at 1 m for multi-stranded cable
- 3.1 Gbps *) for 4 m for solid core cable
- 1.2 Gbps *) for 6 m for solid core cable (preliminary)

*) This is raw BW. The useful rate is 8/10 of that.

The environmental effects of cable and CF surface proximity can be important (in progress).

For the next steps:

- Need to figure out where/how to make multi-stranded TWP with polyimide.
- Should probably radiation-test the thin solid-core TWP cable anyway. There will be Los Alamos irradiation run in December.
- It would be interesting to do a more comprehensive mockup with CML drivers/wirebonding along with the cable.
- It would make sense to investigate "hybrid" solution of TWP followed by twinax.

T. Flick - Powering and Cabling wrap up

03.11.14 • 17

Cable Measurements: Attenuation & Bandwidth

- A BERT (Bit Error Rate Test) test on the 0.5m cable was performed by Vitaliy at UCSC/SLAC
- Good results were obtained to 3.11 Gbit/sec using 8/10 b encoding
- We are preparing to send the 0.875 m cable to Vitaliy for a similar test, but we are waiting for a differential signal transformer to preform a true differential signal measurement.
- Maurice has encouraged us to try new dielectric materials, optimized for faster signals
- We are obtaining samples of Dupont Pyralux TK (Teflon/Kapton) and a custom polyimide formulation by our vendor (Qflex)
- Both of these materials have Dielectric Constant = 2.5 (instead of 3.4)
- Also these materials allow for thinner dielectric and thinner copper in a differential microstrip design – about half the radiation length of present design
- We are having sheets of these materials sent to us. On the sheets we are having a serpentine microstrip design made onto them with four lengths (0.5 m,0.75 m,1.0 m,1.25 m).

Neil McFadden, UNM

Stage and Optics pricing

X stage 800mm, Y stage 400mm, Z stage 100mm X and Y stages PRO 165 series Aligned and calibrated as an assembly Accuracy +/- 2.5um

quote £26K

Mitutoyo Long Working Distance Objectives:

http://mitutoyo.incony.de/web/mitutoyo/en_GB/mitutoyo/1358419146666/10X%20lens%20(WD% 20:%2051%20mm,%20NA%20:%200.21)/\$catalogue/mitutoyoData/PR/375-039/index.xhtml

3x NA=0.09 WD=77mm limit=3um £475 5x NA=0.13 WD=61mm limit=2um £767 10x NA=0.21 WD=51mm limit=1.5um £635

Camera (plus cheap webcam!): http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4024

1/2" CMOS (6.66mm x 5.32mm), 1.3 MPix

5.2 um pixels

Max 25 fps 8-bit

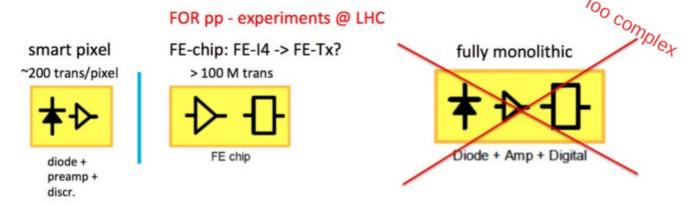
£250

DCC1645C

John Matheson

André Rummler | Module concept in the ALPINE layout | Annecy-le-Vieux, 12.11.2014

ITK: CMOS (Wednesday 8:30)



UNIVERSITÉ DE GENÈVE

Daniel Muenstermann

Outline of the Demonstrator programme

- Effort led by Norbert Wermes
 - ☐ In order for CMOS Pixels to enter the TDR as a to-be-further-pursued option it needs to be demonstrated that a reasonably sized CPIX detector detects particles in an understandable and efficient way in a test beam by next year (i.e. end 2015).

- ☐ This we call a **DEMONSTRATOR** with the following features:
 - a pixel module
 - reasonable size (1-4 cm²)
 - bonded to FE-I4
 - irradiated to 10¹⁵ cm²
 - simple on the main issues
 - characterized with pulses, rad. sources
 - => test beam.

Goal of the CPIX demonstrator "Task Force"

UNIVERSITÉ DE GENÈVE

Daniel Muenstermann

Time frame of the Demonstrator programme

- Goal: Have reasonably sized modules characterised by end of 2015
 - build upon small test-chip (MPW) submissions with many technologies
 - aim for "large" (MLM/engineering) submissions with 2-3 technologies
 - common specifications for demonstrator submissions currently being written up, release next week
 - Aug-Nov 14: submissions and decision on designs for "large-size" design commonalities
 - ☐ condition: test results from previous submissions needed
 - ☐ Task force (key designers + few) set up -> proposal by Oct 14
 - Nov14 Feb15: submission of optimized designs in 2-3 technologies
 - April-July 2015: characterization in lab (stand alone)
 - ☐ June-Aug 2015: module assembly and lab characterization
 - ☐ Sep-Dec 2015: preparation and demonstration in test beams

N. Wermes

ITK: Common electronics (Wednesday 11.00)

QA During R&D

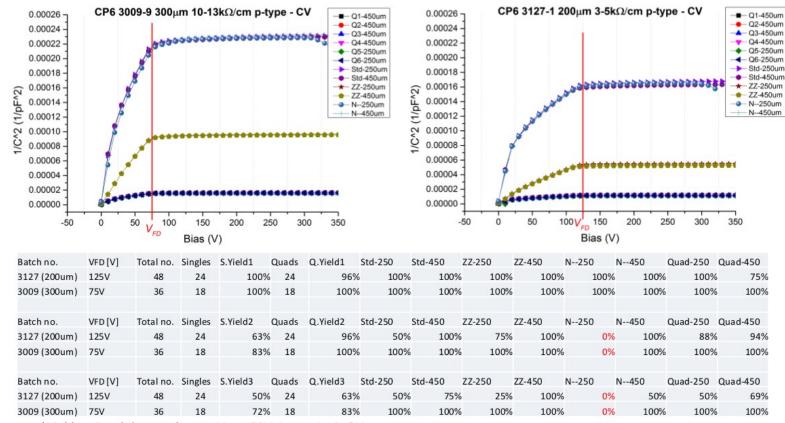
- Stress tests on sample basis
 - Elevated temperatures
 - Elevated humidity
 - Thermal cycling
 - Thermal shock
 - Low temperature operation
 - Vibration tests
 - Long term tests
- Should be discussed before PDR

AUW Nov. '14 ITk common electronics

Tony Weidberg

Alpine: Take into account for our own stave testing program

ITk: Pixel Module Sensor 1+2 (Wednesday 14:00)



 working on larger experimental chips but no schedule for full size FE-I5 soon due to lack of man power, etc.

CVs, Full depletion voltage & Wafer yields

^{*}Yield1 – Breakdown voltage > VFD + 50V, $lleak < 1 \mu A$ @VFD

04/11/2014

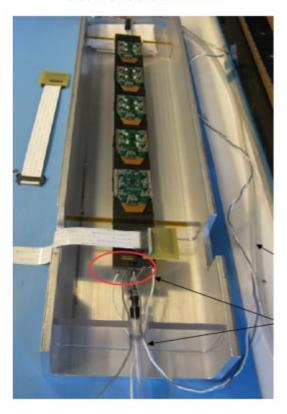
ITK meeting, CERN, Sep. 2014

15

^{*}Yield2 - Breakdown voltage > 500V

^{*}Yield3 – Breakdown voltage > 1000V

Current activities

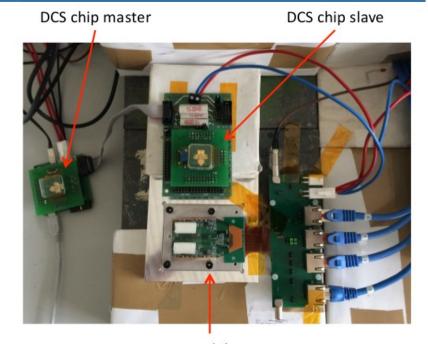


- New SP stave prototypes with FE-I4B quad modules are in preparation at Uni Bonn and LBNL
 - 70 cm long stavelets with possibility of having two SP chains of 4 and 5 modules

Main focus of the SP stave tests

- Module bypass element
 - HV distribution
- Alpine staves prototypes with serial powering are in preparation at Lapp
 - A. Rummeler, https://indico.cern.ch/event/ 349855/contribution/4/material/slides/ 0.pdf
- Work started also for SP pixel disks prototypes (Liverpool)

Stavelet at LBNL



20

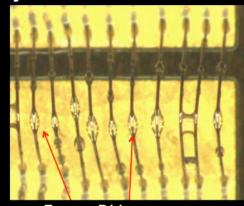
DCS chip + quad

- The DCS chip has been tested in parallel to a quad module
- One day of testing → results all very preliminary
- Module ON/OFF on command (slow control) and upon overvoltage (fast response demonstrated
- Setup still needs to be optimized, in particular ground connection for stable and reliable data communication

12

gonella@physik.uni-bonn.de

HV distribution


- Distribution of the HV to bias the sensors in a SP chain has to be done according to the current distribution scheme, to avoid shorting the SP chain
- Convenient solutions for prototyping
 - One HV supply per module
 - Group all modules in a SP chain to one HV power supply, and connect the HV return line to the local grounds of the modules (used for SP stave prototype with FE-I4A). Drawback: independent monitoring of sensor leakage current not possible, same HV bias to all modules in the SP chain
- For detector operation
 - One HV supply for module
 - HV switch could also be considered
- No activity yet on this topic

gonella@physik.uni-bonn.de 16

Spraying Cellpack D 9201 Polyurethane

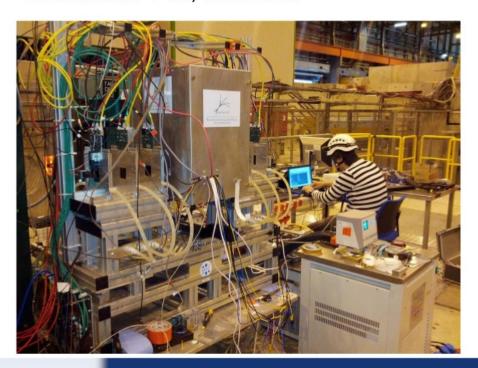
- PU spray can application unsatisfactory
 - This spray is too heavy
 - PU consistently forms drops
- Talon Airbrush
 - Adjustable flow rate
 - 0.25, 0.38, 0.65 mm nozzle/needle
 - 0.65 mm appropriate for PU
 - · Smaller needles clog

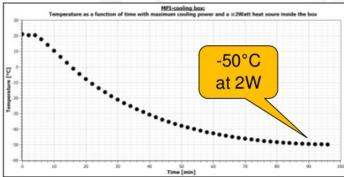
From PU spray can

too fine

good

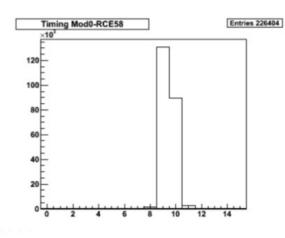
too heavy

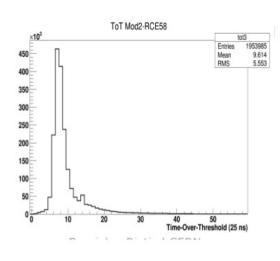


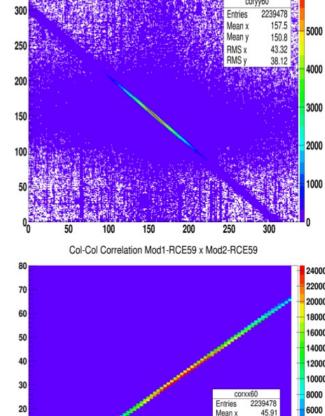

What did work?

New MPI cooling box

- · circulates chilled air, using high-power chiller
- very good insulation
 - → achieved -45°C on an irradiated SC sample
- new heavy-duty xy-stages from PI, incl. control s/w
- samples mounted on baseplate outside the box → easy access
- lot of material → only used at CERN


11/5/2014


AUW Meeting

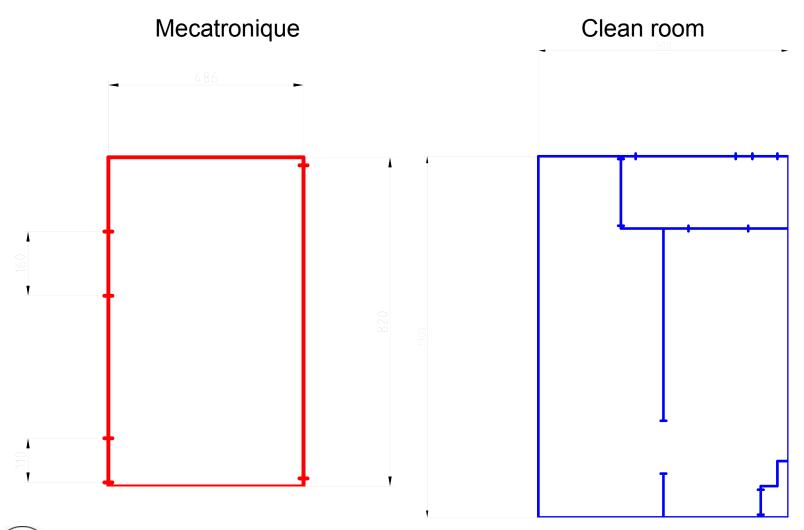


Online Monitoring/Reconstruction

- Telescope copes guite nicely with the beam at | SPS
 - 180 GeV pion beam
- DAQ runs very stable → No problems in days
- Triggered on Hitbus of telescope planes
 - Up to 7000 trig/spill (spill length: ~400ms)
 - ~20000 trigger/ spill
- Timing as expected for unirradiated IBL sensors
- Quite clear correlations,

SPS Data

ATLAS Upgrade Week, ITk: Pixel module/

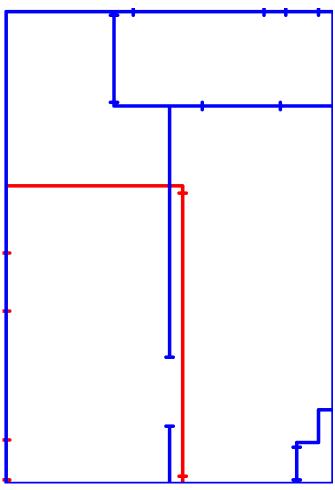


35.5

16.03 15.71 4000

Lab planning

Mecatronique



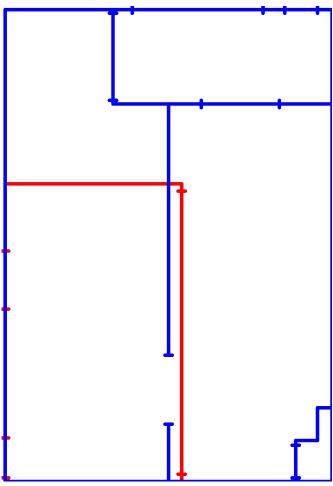
Clean room

• Space :

- Mecatronique : 40 m²

- Clean room: 100 m²

 Assumption that it is useful to keep everything together in one room or at least in vincinity (or are there drastically different needs?)


• Cleaniness:

- Not required during IBL construction « but should have been » (opinion of involved persons)
- Grey room during Pixel construction
- Constant effort necessary to make proper use of clean room
- Alternative : laminar flow hood/tent for gluing ?

• Supplies :

- Dry (oil less) compressed air
- Nitrogen
- Electricity
- Vacuum
- Network

- Stations:
- 2 Module measurement (USBpix, light tight box, scintillator trigger, computer, work station, shielding prepared for work with radioactive source, probably cooling) à (2+1)*1 m
- Module construction mechanics, glue preparation, glue storage (fridge?), parts storage, module storage, work space, tooling à 3*1 m
- Stave loading jig, tooling à 4*1m
- Stave testing similar to module testing, but different read out à 5*1m
- Climate chamber
- Source storage
- General works space
- Cooling

Radioactive source(s)

- Necessary for module testing
- Sr-90 and Am-241 traditionally used
- Extremely long buerocratic lead time: need to start radiation protection organization now

Next steps

- Finalizing module flex design and production
- PSPP commissioning
- Follow up sensor and read out status
- Lab planning

