# Run-I Higgs results and prospects for Run-II (HL-LHC)

### Giacinto Piacquadio (SLAC) on behalf of the **ATLAS** Collaboration

Rencontres de Moriond 17 March 2015





## The Higgs sector today



- Higgs boson discovery already "old news"
- Main focus measuring Higgs boson properties:
  - (On/off-shell/invisible) couplings
  - Mass, Spin/CP state
- Or look for rare decays or coupling to exotic particles (discussed by Paolo Meridiani later today)



- Finalized most of **Run-I** Higgs analyses!
  - Reduced experimental/theory systematic uncertainties
  - Increased sensitivity, especially to **sub-leading production modes**  $H \rightarrow \gamma\gamma$  $3.5 \quad \sqrt{s} = 7 \text{ TeV} \int Ldt = 4.5 \text{ fb}^{-1} \qquad H \rightarrow ZZ^* \rightarrow 4l$ •  $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.3 \text{ fb}^{-1} \qquad H \rightarrow ZZ^* \rightarrow 4l$ •  $H \rightarrow ZZ^* \rightarrow 4l$ •  $M \rightarrow ZZ^* \rightarrow 4l$

### What do we look for...



#### [Phys. Rev. D 90, 112015 (2014)]





|                           | •                         |
|---------------------------|---------------------------|
| Uncertainty group         | $\sigma_{\mu}^{ m syst.}$ |
| Theory (yield)            | 0.09                      |
| Experimental (yield)      | 0.02                      |
| Luminosity                | 0.03                      |
| MC statistics             | < 0.01                    |
| Theory (migrations)       | 0.03                      |
| Experimental (migrations) | 0.02                      |
| Resolution                | 0.07                      |
| Mass scale                | 0.02                      |
| Background shape          | 0.02                      |
|                           |                           |



Theory uncertainties: • QCD scale (ggF: ±7%) • PDF (ggF: ±7%) • BR(H to γγ) (±5%)

 Leading uncertainty despite NNLO+NNLL QCD computation

Energy resolution: • Determined in Z to ee + MC extrapolation





Theory uncertainty again dominant systematics
Even higher for VBF (~20%), similar for VH (~10%)
Jet energy scale systematics important for VBF and VH categories (~10%)









# VH to WW (multi-lepton)



#### 3 leptons



2 OS leptons





SS = same sign, OS = opposite sign

- Categories depending on number of leptons and jets
  - Sub-categories depending on number of same flavor opposite sign leptons
- VV, VVV (V=W,Z,γ) are the main backgrounds, in add. top and Z/W +jets in the 2 lepton channels

#### • Results:

$$\begin{split} \mu_{\rm WH}^{\rm WW} &= 2.1^{+1.5}_{-1.3}\,({\rm stat.})^{+1.0}_{-0.9}\,({\rm sys.}), \ \mu_{\rm ZH}^{\rm WW} = 4.9^{+3.7}_{-2.9}\,({\rm stat.})^{+1.7}_{-1.0}\,({\rm sys.}) \\ \mu_{\rm VH}^{\rm WW} &= 2.9^{+1.2}_{-1.1}\,({\rm stat.})^{+0.8}_{-0.6}\,({\rm sys.}) \end{split}$$

• Combined with the ggF and VBF channels, helps constraining the fermionic coupling.



**Combined:** 



| Source of Uncertainty           | Uncertainty on $\mu$ |
|---------------------------------|----------------------|
| Signal region statistics (data) | $+0.27 \\ -0.26$     |
| Jet energy scale                | $\pm 0.13$           |
| Tau energy scale                | $\pm 0.07$           |
| Tau identification              | $\pm 0.06$           |
| Background normalisation        | $\pm 0.12$           |
| Background estimate stat.       | $\pm 0.10$           |
| BR $(H \to \tau \tau)$          | $\pm 0.08$           |
| Parton shower/Underlying event  | $\pm 0.04$           |
| PDF                             | $\pm 0.03$           |
| Total sys.                      | $+0.33 \\ -0.26$     |
| Total 10                        | $^{+0.43}_{-0.37}$   |
| 10                              |                      |

Jet energy scale: especially forward/ central eta intercalibration

 Background normalization (esp. Z to TT and top)

♥ 2200<sup>上 presel.</sup>

Alex, Tuna's talk in YSF

#### [JHEP 01(2015) 069]

# VH to Vbb

 BR(H to bb) ~60%: *leading contribution* to Higgs width

Z W **0-lepton 1-lepton** ATLAS Simulation Pythia VI®, H → bb Met Variag (je 0.1 4.0 4.0 2 lep., 2 jets, 2 b-tags Events / p<sup>v</sup> inclusive p<sup>v</sup> inclusive Events / 14% 0.08 1-tag: MV1c 60 50 0.06 Global Sequential Calib. (GSC) + Muon-in-Jet Correction 2-tag: BDT 40 + Resolution Correction 0.04 30 esp. **mass(bb),** 20 0.02 ¢T(V), ₩V1c) 10F

100 120 140 160



Z

m<sub>bb</sub> [GeV]







180

200

#### Jet energy scale and b-tagging

 Theory modeling of backgrounds dominant (esp. W+bb, W+bl)

Three channels

#### Categorization

- **Two** pT(W/Z) regions (<120, >120
- Four b-tag regions (1-tag + 3 x 2-tag)
- Two jet bins (2 and 3 jets)
- Use b-tagging discriminant (MV1c)

60

80

20

40

[arXiv:1503.01060]

 $\rightarrow$ )VV

 $(H^*$ 

 $\oplus$ 



 $N^{N^{V}}$ 

### Off-shell coupling analysis

 $H^*$ 

- Measure the Higgs boson signal strength for m(ZZ/WW) >> 2 m<sub>Z/W</sub>
  - Can look for coupling deviation good from SM at high energies \$
- Three channels considered:





### Higgs to invisible

#### **VBF**

(e.g. the Higgs boson might decay into dark matter particles)

 2 jets from VBF signature + high missing E<sub>T</sub> (>150 GeV)

| Process                         | Yield $\pm$ Stat $\pm$ Syst |
|---------------------------------|-----------------------------|
| ggH Signal                      | $20 \pm 5.5 \pm 9.7$        |
| <b>VBF</b> Signal               | $286 \pm 5 \pm 49$          |
| $Z \rightarrow \nu\nu + jets$   | $339 \pm 22 \pm 13$         |
| $W \rightarrow \ell \nu + jets$ | $237 \pm 17 \pm 18$         |
| Multijet                        | $1.9 \pm 2.4$               |
| Other Backgrounds               | $0.4 \pm 0.2 \pm 0.3$       |
| Total Background                | $578 \pm 38 \pm 30$         |
| Data                            | 539                         |

- Dedicated Z→II and W→Iv control regions (CRs), emulating missing E<sub>T</sub>
- Simultaneous fit to yields in signal and Z+jets and W+jets control regions.

 $BR(H \rightarrow invisible) < 29\% @ 95 CL (35\% exp)$ 

Two signatures:

• ZH to  $\ell \ell$  + invisible

 $BR(H \rightarrow invisible) < 75\% @ 95 CL (62\% exp)$ 

• W/ZH to jj + invisible



VH

Includes ggF contamination

 $BR(H \rightarrow invisible) < 78\% @ 95 CL (86\% exp)$ 

• Alternatively, set limits on  $\sigma \times BR$ :



[ATLAS-CONF-2015-004]



[ATLAS-CONF-2015-008]

# Spin/CP: parity / CP mixing

Define new observables:

 $\mathbf{O}_{1}(\mathbf{K}_{HVV}) \sim \frac{2R(ME(\kappa_{HVV})^{*}, ME(SM))}{|ME(\kappa_{HVV})|^{2}}$ 

and similarly for  $\kappa_{AVV}$  tan( $\alpha$ )

 $H \rightarrow ZZ^* \rightarrow 4l$ 

 $\sqrt{s} = 7 \text{ TeV}. 4.5 \text{ fb}^{-1}$ 

 $\sqrt{s} = 8 \text{ TeV}$ . 20.3 fb<sup>-1</sup>

8

 $\tilde{\kappa}_{HVV}/\kappa_{SM}$ 

Perform CP mixing scan

fitting 0<sub>1</sub>,0<sub>2</sub> and BDT<sub>ZZ</sub>

 $O_2(\kappa_{HVV}) \sim \frac{|ME(SM))|^2}{|ME(\kappa_{HVV})|^2}$ 

ATLAS Preliminary

Observed

----- Expected: SM

Expected:

signal strength fit to data

<sup>15</sup> CP even mixture

-2

#### **Spin-0 with CP mixing**

![](_page_15_Figure_3.jpeg)

2

20

10

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

### Conclusions

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

#### • Important lessons for Run-II and beyond

- Despite huge progress, in many cases systematics (esp. theory) dominant
  - Theory uncertainty on cross section +
     acceptance of Higgs signal
- Background modeling (e.g. V+bb, tt+bb for H to bb)
   Michael Duehrssen
   Higgs combination

techniques to fully profit from improved statistical sensitivity.

- Final Run-I Higgs analyses!
  - Improved sensitivity, especially to different production modes
  - No significant deviations from SM so far.
  - Signal strength in all **production** and **decay** modes input to coupling fits (→ Michael's talk later today!)

![](_page_16_Figure_12.jpeg)