## Scalar: CMS Run 1 final results, prospectives for Run 2 (and HL-LHC)

Josh Bendavid (CERN) for the CMS Collaboration



March 17, 2015 Moriond EW La Thuile, Italy

#### Introduction

- A new scalar particle discovered in 2012 with  $\sim 5+5 fb^{-1}$  at 7+8~TeV
- $\bullet\,$  Published results for main channels available with full Run 1 dataset ( $\sim5+20 {\rm fb}^{-1})$

| Channel                                          | Paper           |
|--------------------------------------------------|-----------------|
| H  ightarrow 	au 	au                             | arXiv:1401.5041 |
| W/Z + H  ightarrow bb                            | arXiv:1310.3687 |
| $H  ightarrow WW  ightarrow 2\ell 2  u$          | arXiv:1312.1129 |
| $H  ightarrow ZZ  ightarrow ZZ  ightarrow 4\ell$ | arXiv:1312.5353 |
| $H  ightarrow \gamma \gamma$                     | arXiv:1407.0558 |
| tt + H Combination                               | arXiv:1408.1682 |
| Spin/CP and Anomalous Couplings                  | arXiv:1411.3441 |
| Width from off-shell production                  | arXiv:1405.3455 |
| Combination                                      | arXiv:1412.8662 |

白 と く ヨ と く ヨ と …

3

## $H\to\tau\tau$

- Events selected in  $e\mu$ ,  $e\tau_h$ ,  $\mu\tau_h$  and  $\tau_h\tau_h$  final states
- $\tau\tau$  mass reconstructed using kinematic fit of visible products and  $\not\!\!\!E_{\tau}$  with likelihood constraints on decay kinematics
- $Z \to \tau \tau$  background estimated from  $Z \to \mu \mu$  events in data with  $\mu$  replaced by simulated  $\tau$
- W + jets and multijet background estimated from high transverse mass and same-sign control regions
- Events further categorized according to production: additional leptons, di-jet VBF tagged, boosted (high lepton or ττ p<sub>T</sub>), 0/1 jets



3

### SM $H \rightarrow \tau \tau$ Results



- Final results extracted from binned likelihood fit to  $m_{\tau\tau}$  distribution
- $\sigma/\sigma_{SM} = 0.78 \pm 0.27$ , Observed Significance 3.2 $\sigma$  (Expected 3.7 $\sigma$ )

• 
$$m_H = 122 \pm 7$$
 GeV (6%)

・ 母 と ・ ヨ と ・ ヨ と

## $W/Z + H \rightarrow bb$

- *H* → *bb* has high branching ratios but huge QCD backgrounds
- To achieve reasonable S/B, select  $W/Z + H \rightarrow \ell \nu \ \ell \ell \ \nu \nu + bb$  events with significant W/Z boost
- Require two central b-tagged jets:  $\sim 10\%$  mass resolution after b-jet energy regression
- MVA (mass-dependent) trained on dijet, W/Z kinematics, and additional jet kinematics, plus b-tagging discriminants.
- Background yields scaled from inverted b-tagging (W/Z+light flavour), tighter b-tagging plus extra jets (tt̄), M<sub>jj</sub> sidebands (W/Z+bb̄)





 Results extracted from fit to final BDT distribution, partitioned using dedicated BDT's into individual background and signal-enriched regions

< □ > < @ > < 国 > < 国 > sults 6 \_\_\_\_ 3



- $\sigma/\sigma_{SM} = 0.84 \pm 0.44$  (including also contribution from  $tt + H \rightarrow b\bar{b}$  and taking into account gluon-induced Z + Hproduction)
- Observed Significance 2.0 $\sigma$  (Expected 2.6 $\sigma$ )



3



#### $H \rightarrow WW \rightarrow 2\ell 2\nu$

#### WW-level Event Selection:

- Two opposite charge leptons with 20/10 (15) GeV p<sub>T</sub> threshold for opposite-flavour (same flavour) events
- Events further divided into 0-jet, 1-jet, di-jet tagged, additional lepton categories
- Soft-muon and b-tag veto (also on soft jets in 0-jet bin), Z-mass veto for same-flavour pairs



#### $H \rightarrow WW \rightarrow 2\ell 2\nu$

#### **Background Estimation:**

- W+jets background estimated from l+ loose l sample, fake rates estimated from dijet sample
- tt
   t
   i
   background estimated from b-tagged events, tagging efficiency from double-b-tag sample
- $W\gamma^*$  estimated from three-lepton control sample
- $Z \to \ell \ell$  estimated from yield in Z-peak
- $Z \rightarrow \tau \tau$  estimated from embedded sample
- Small Wγ contribution estimated from simulation + control region, cross-checked in same-sign events
- WW background normalized in situ





9

★ 문 ► ★ 문 ►

## $H \rightarrow WW \rightarrow 2\ell 2\nu$ : Fit Strategy



- Results in 0/1 jet opposite flavour categories extracted from binned 2D likelihood fit to  $m_{\ell\ell}-m_T$  distribution
- $\sigma/\sigma_{SM} = 0.72^{+0.20}_{-0.18}$
- Observed Significance  $4.3\sigma$  (Expected  $5.8\sigma$ )

< ≣⇒

## $H \rightarrow ZZ \rightarrow 4\ell$

- "Golden channel" Narrow mass peak on small background
- Select 4 leptons of appropriate charge and flavour combinations (+FSR recovery) with 40  $< m_{Z1} < 120$  GeV,  $12 < m_{Z2} < 120$  GeV
- Electron acceptance:  $|\eta| < 2.5$ ,  $p_T > 7$  GeV, Muon acceptance:  $|\eta| < 2.4$ ,  $p_T > 5$  GeV
- $\bullet~$  Irreducible  $ZZ \rightarrow 4\ell$  continuum background estimated from MC
- Reducible  $Z + b\bar{b}$  and  $t\bar{t}$  backgrounds estimated from Z + same-sign dilepton/Z + loose dilepton samples, with fake rates from Z + loose  $\ell$  sample



## $H \rightarrow ZZ \rightarrow 4\ell$ Results

 Results extracted from 3d unbinned maximum likelihood fit to m<sub>4ℓ</sub> distribution with matrix element likelihood discriminant and p<sup>4ℓ</sup><sub>T</sub>



- $\sigma/\sigma_{SM} = 0.93^{+0.26}_{-0.23}$ (stat.) $^{+0.13}_{-0.09}$ (syst.), 6.8 $\sigma$  observed significance (6.7 $\sigma$  expected)
- $m_H = 125.6 \pm 0.4 (\text{stat.}) \pm 0.2 (\text{syst.}) \text{ GeV}$

## $H \rightarrow ZZ \rightarrow 4\ell$ : Indirect Width Constraint

- High mass tail sensitive to Higgs width through  $gg \rightarrow H^* \rightarrow ZZ + gg \rightarrow ZZ + interference$
- Indirect constraint on width with simultaneous fit to high mass region (assuming no new particles in the gluon fusion production loop)



•  $\Gamma_H < 22$  MeV (95% C.L.) ( $\Gamma_{SM} \sim = 4$  MeV)

# $H \to \gamma \gamma$

- Select two isolated high  $p_T$  photons
- Multivariate energy corrections for local and global electromagnetic cluster containment (Resolution and energy scale corrections from Z → ee)
- Primary vertex selection ambiguous in high pileup: combine information on track recoil against di-photon system with conversion pointing where available (correct vertex in  $\sim 80\%$  of events)
- Multivariate discriminant used to categorize events based on kinematics, photon identification quality, per event mass resolution





- Events further categorized to tag production modes
- Overall  $\sigma/\sigma_{SM} = 1.14 \pm 0.21 (\text{stat.})^{+0.09}_{-0.05} (\text{syst.})^{+0.13}_{-0.09} (\text{th.})$ 5.7 $\sigma$  observed significance (5.2 $\sigma$  expected)

- < ≣ →

# $H \to \gamma \gamma$



- Energy scale and resolution exhaustively calibrated and checked with  $Z \rightarrow ee$  with detailed simulation studies for electron $\rightarrow$  photon extrapolation
- $m_H = 124.70 \pm 0.31 (\text{stat.}) \pm 0.15 (\text{syst.}) \text{ GeV}$

## tt + H

- Dedicated *tt* + *H* selections have been constructed for scalar decays to *bb*, hadronic taus, photons
- Additional tt + H multilepton selections collect events from scalar decays to leptonic τ, WW, ZZ
- Dedicated lepton identification to suppress especially leptons from B decays in tt+jets
- $\bullet\,$  Select same sign leptons, or 3/4 leptons + 2 b-tagged jets, final selection with kinematic BDT



tt + H



- Combined  $tt + H \sigma / \sigma_{SM} = 2.8^{+1.0}_{-0.9}$
- About  $2\sigma$  high with respect to SM expectation, driven by  $\mu^\pm\mu^\pm$  channel
- significance with respect to no-scalar hypothesis is 3.4 $\sigma$  (1.2 $\sigma$  expected)

18

- Angular distributions in ZZ, WW,  $\gamma\gamma$  decays used to test alternate spin/parity hypotheses
- Pure pseudoscalar and wide range of spin 1 and 2 variations are strongly excluded (but parameter space of spin 2 is large)



## Conclusion: Run 1



- Overall  $\sigma/\sigma_{SM} = 1.00 \pm 0.14$
- Combining  $H \to ZZ, \gamma\gamma$ :  $m_H = 125.02^{+0.26}_{-0.27} (\text{stat.})^{+0.14}_{-0.15} (\text{syst.})$
- Measured signal strengths broadly consistent with SM expectations
- Tests of angular distributions indicate particle is indeed a scalar

#### Prospects for Run 2

- $\bullet\,$  Gluon fusion Higgs cross section increases by  $\sim 2.3$  from 8 TeV to 13 TeV
- tt + H cross section increases by  $\sim 4$
- Background cross sections of course also increase
- $\bullet~{\rm Up}$  to  $\sim 100~{\rm fb}^{-1}$  expected for Run 2
- "signal strength" measured so far: model-dependent cross section extrapolated to full phase space
- Run 2: Fiducial Cross Sections, Differential Cross Sections
- Complete the transition from discovery to precision physics
- Maintain object and analysis performance with 25ns bunch spacing

回 と く ヨ と く ヨ と

## Actions for Run 2

#### Incorporating

knowledge/experience/developments/optimization from Higgs analyses into default reconstruction (Global Event Description)

- Improved Monte Carlo simulation: NLO+PS QCD description for all Higgs production modes, merged NLO+PS QCD accuracy for additional jets
- New calorimeter local reconstruction to mitigate out of time pileup with 25ns bunch spacing.



## Beyond Run 2: HL-LHC



- Naive scaling of signal and background yields by cross section and luminosity, starting from preliminary results
- Neglects analysis improvements, degradation from higher pileup and detector aging, improvements from upgrade detector
- Depends on assumptions about systematic uncertainty evolution optimistic/pessimistic

#### Backup

#### Direct Width Constraints



Gamma < 1.7 GeV (95% C.L)

< ≣⇒



## $H\to\gamma\gamma$ VBF Categorization MVA





물 에 제 물 에

Э

• • • • •

## $H\to\gamma\gamma$ Category Composition







#### $H \rightarrow \gamma \gamma$ : Photon Identification



Josh Bendavid (CERN) CMS Scalar Results

▲圖▶ ★ 国▶ ★ 国▶

## $H \rightarrow \gamma \gamma$ : Photon Energy Regression



- Multivariate likelihood fit to  $E_{True}/E_{Raw}$  distribution in training sample as a semi-parametric function of input variables
- Response distribution fit with double-sided crystal ball in infinitesimal slices of input variables (shower shapes, cluster positions, N<sub>vtx</sub>) constructed with BDT's
- Corrects energy scale (and estimates per-photon resolution) for local (gaps and cracks) and global (conversion/Bremsstrahlung) shower containment, pileup contamination

#### $H \rightarrow \gamma \gamma$ : Vertex Identification



Josh Bendavid (CERN)

**CMS Scalar Results** 

32

Э

## HL-LHC $H\to \mu\mu$



▲御≯ ▲理≯ ▲理≯

## $tt + H \rightarrow$ leptons $(\mu^{\pm}\mu^{\pm})$ : Loose/Inverted Muon ID



Josh Bendavid (CERN) CMS Scalar Results 34

# tt + H ightarrow leptons $(\mu^{\pm}\mu^{\pm})$



35