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Main motivations for agravity

Motivation 1: naturalness

Agravity provides an alternative solution of the hierarchy problem:
there are no Λ2 contributions because there are no masses.
This in turn leads to dynamical generation of masses

Like for the proton: its mass is mostly dynamical generated

Motivation 2: inflation

Cosmological observations suggest inflation. However, it requires flat potentials.
What is the reason for this flatness? Agravity gives us an explanation:
The Einstein frame potential of a scalar s in agravity is

U(s) =
λS s

4

(2ξS s2)2
M̄4

Pl =
λS

4ξ2
S

M̄4
Pl

The potential is flat at tree-level, but at quantum level λS and ξS depend on s

this effect (due to the RGEs) gives some slope ... which is small if couplings are perturbative

what we need to have inflation!
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Agravity scenario

The most general agravity Lagrangian:

L =
R2

6f 2
0

+
1
3
R2 − R2

µν

f 2
2

+ LadimSM + LadimBSM

Non-gravitational sectors

I LadimSM is the no-scale part of the SM Lagrangian (without m2|H|2/2):

LadimSM = −
F 2
µν

4
+ ψ̄iD/ψ + |DµH|2 − (yHψψ + h.c.)− λH |H|4 − ξH |H|2R

I LadimBSM describes physics beyond the SM (BSM). It generates the weak scale

↑
adding a scalar s → LadimBSM = ...+λHS s

2|H|2/2− ξS s2R/2

vectors in the s-sector can be dark matter [Hambye, Strumia (2013)]

Gravity sector

I 〈s〉 generates M̄Pl: ξS s
2R → M̄2

Pl = ξS |〈s〉|2

I Agravity is renormalizable, however, looking at the spectrum:

(i) massless graviton
(ii) scalar z with mass M2

0 ∼
1
2
f 2
0 M̄2

Pl

(iii) massive graviton with mass M2
2 = 1

2
f 2
2 M̄2

Pl and negative norm,
but with energy bounded from below

The literature is controversial

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.953
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Quantum corrections

They are mostly encoded in the RGEs

They are important to obtain ns and r and to dynamically generate M̄Pl and m

We computed the 1-loop RGEs for all couplings of the most general agravity

R2

6f 2
0

+
1
3
R2 − R2

µν

f 2
2

−
(
FA
µν

)2

4
+

(Dµφa)2

2
−
ξab

2
φaφbR−

λabcd

4!
φaφbφcφd+ψ̄j iD/ψj−Y a

ij ψiψjφa+h.c.

Without gravity this was done before
[Machacek and Vaughn (1983,1984,1985)]

http://www.sciencedirect.com/science/article/pii/0550321383906107
http://www.sciencedirect.com/science/article/pii/0550321384905339
http://www.sciencedirect.com/science/article/pii/0550321385900409
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Dynamical generation of the Planck scale

Agravity successfully generates the Planck scale if


λS (s) ' 0 ↔ nearly vanishing cosmological constant (dark energy)

dλS
ds

(s) = 0 ↔ minimum condition

ξS (s)s2 = M̄2
Pl ↔ observed Planck mass



Is the dynamical generation of the Planck scale possible?

Are these conditions realized in the physics we know (the SM)?
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Thus the dynamical generation of the Planck scale is possible!



Predictions for inflation (generically a multifield inflation)

The minimal realistic model
has at least 3 scalars:

the SM scalar h
the Planckion s
the graviscalar z

Ms = mass of s
M0 = mass of z

ΞS = 1, ΞH = 1 , Ms�M0 = 0.10, ΛH = 0.01
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the inflaton is s (z)
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a global fit of Planck
and BICEP2/Keck
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Natural dynamical generation of the weak scale

1) Low energies (µ < M0,2): agravity can be neglected and the SM RGE apply:

(4π)2 dm2

d lnµ
= m2βSM

m , βSM
m = 12λH + 6y2

t −
9g2

2

2
−

9g2
1

10

2) Intermediate energies (M0,2 < µ < M̄Pl): Both m and M̄Pl appear and we find

(4π)2 d

d lnµ

m2

M̄2
Pl

= −ξH [5f 4
2 + f 4

0 (1 + 6ξH)] + ...

The red term is a non-multiplicative potentially dangerous correction to m

m2 ∼ M̄2
Plf

4
0,2, naturalness → f0, f2 ∼

√
4πm

MPl
∼ 10−8

3) Large energies (µ > M̄Pl):

λHS |H|2s2 → m2 = λHS 〈s〉2

λHS can be naturally small (looking at the RGE of λHS ):

→ λHS ∼ f 4
0,2
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Natural weak scale and unification

It is possible to preserve a natural weak scale if

I a semi-simple gauge group is used: e.g. the Pati-Salam SU(4)× SU(2)× SU(2)

I all SM Landau poles are removed (we require this as we want to go up to infinite
energy and in the SM the experiments tell us that e.g. gY diverges at 1042 GeV)

Models of this type have been found
and predict a lot of new physics not far above the weak scale

(In the SM the elimination of such poles requires unrealistic conditions: gY = 0, ...)



Conclusions

I Naturalness and a rationale for inflation can be achieved in no-scale theories of all
interactions (including gravity): agravity

I Inflation: the minimal realistic model predicts ns ≈ 0.967, 0.003 < r < 0.13,
in agreement with Planck and BICEP2/Keck.
Keck/Bicep3 may give us more constraints on this scenario.

I Naturalness is also compatible with unification.
SM Landau poles can also be eliminated.
In this case there is new physics not far above the weak scale (e.g. W ′).

Thank you very much
for your attention!



Conclusions

I Naturalness and a rationale for inflation can be achieved in no-scale theories of all
interactions (including gravity): agravity

I Inflation: the minimal realistic model predicts ns ≈ 0.967, 0.003 < r < 0.13,
in agreement with Planck and BICEP2/Keck.
Keck/Bicep3 may give us more constraints on this scenario.

I Naturalness is also compatible with unification.
SM Landau poles can also be eliminated.
In this case there is new physics not far above the weak scale (e.g. W ′).

Thank you very much
for your attention!



Extra slides



Ghosts

Negative literature [Ostrogradski (1850), Smilga (2009), ...]

I Classically the energy is not bounded from below (Ostrogradski instability)

I At quantum level creation of negative energy ∼ destruction of positive energy:
the Hamiltonian becomes positive, but some states (“ghosts”) have negative
norm

Positive literature

I [Lee, Wick (1969)] the introduction of negative norms can lead to a unitary
S-matrix, provided that all stable particle states have positive norm

I [Hawking, Hertog (2001)] at least in a simple scalar field φ theory, the problem
comes from regarding φ and �φ as independent and can be overcome by using
the path integral, where they are dependent.

back to main slides

http://arxiv.org/abs/0808.0139
http://www.sciencedirect.com/science/article/pii/0550321369900984
http://arxiv.org/abs/hep-th/0107088


Results for RGEs

Gauge couplings

Their contributions to the RGEs cancel!

This was previously noticed in ↖
[Narain, Anishetty (2013)]

Possible explanation:

the graviton is not charged

Possible new gravity contributions

V V

g

V

V V

g

(Rainbow) (Seagull)

Yukawa couplings

We find the one-loop RGE (where C2F ≡ tAtA and tA ≡ “fermion gauge generators”):

(4π)2 dY a

d lnµ
=

1

2
(Y †bY bY a+Y aY †bY b)+2Y bY †aY b+Y bTr(Y †bY a)−3{C2F ,Y

a}+
15

8
f 2
2 Y a

↙

S

Ψ

Ψ

Ψg

S

Ψ

Ψ

g

S

Ψ

Ψ

Ψ

Ψ

g
S

Ψ

Ψ

g

S

Ψ
S

Ψ

Ψ

g

S

All remaining RGEs

We also computed the RGEs for λabcd ξab f0 and f2

http://inspirehep.net/record/1252060


RGEs for the quartic couplings

Tens of Feynman diagrams contribute to these RGEs ... we obtain

(4π)2 dλabcd

d lnµ
=

∑
perms

[
1

8
λabef λefcd +

3

8
{θA, θB}ab{θA, θB}cd − TrY aY †bY cY †d +

+
5

8
f 4
2 ξabξcd +

f 4
0

8
ξaeξcf (δeb + 6ξeb)(δfd + 6ξfd )

+
f 2
0

4!
(δae + 6ξae)(δbf + 6ξbf )λefcd

]
+ λabcd

[∑
k

(Y k
2 − 3C k

2S ) + 5f 2
2

]
,

where the first sum runs over the 4! permutations of abcd and the second sum over
k = {a, b, c, d}, with Y k

2 and C k
2 defined by

Tr(Y †aY b) = Y a
2 δ

ab, θAacθ
A
cb = C a

2Sδab

(θA are the scalar gauge generators)

back to main slides



RGEs for the quartic couplings: SM case

For the SM H plus the complex scalar singlet S the RGEs become:

(4π)2 dλS

d lnµ
= 20λ2

S + 2λ2
HS +

ξ2
S

2

[
5f 4

2 + f 4
0 (1 + 6ξS )2

]
+ λS

[
5f 2

2 + f 2
0 (1 + 6ξS )2

]
(4π)2 dλHS

d lnµ
= −ξHξS

[
5f 4

2 + f 4
0 (6ξS + 1)(6ξH + 1)

]
− 4λ2

HS + λHS

{
8λS + 12λH + 6y2

t

+5f 2
2 +

f 2
0

6

[
(6ξS + 1)2 + (6ξH + 1)2 + 4(6ξS + 1)(6ξH + 1)

]}
(4π)2 dλH

d lnµ
=

9

8
g4

2 +
9

20
g2

1 g
2
2 +

27

200
g4

1 − 6y4
t + 24λ2

H + λ2
HS +

ξ2
H

2

[
5f 4

2 + f 4
0 (1 + 6ξH)2

]
+

+λH

(
5f 2

2 + f 2
0 (1 + 6ξH)2 + 12y2

t − 9g2
2 −

9

5
g2

1

)
.

back to main slides



RGEs for the scalar/graviton couplings

Complicated calculation (but computer algebra helps!)

(4π)2 dξab

d lnµ
=

1

6
λabcd (6ξcd + δcd ) + (6ξab + δab)

∑
k

[
Y k

2

3
−

C k
2S

2

]
+

−
5f 4

2

3f 2
0

ξab + f 2
0 ξac

(
ξcd +

2

3
δcd

)
(6ξdb + δdb)

For the SM H plus the complex scalar singlet S the RGEs become:

(4π)2 dξS

d lnµ
= (1 + 6ξS )

4

3
λS −

2λHS

3
(1 + 6ξH) +

f 2
0

3
ξS (1 + 6ξS )(2 + 3ξS )−

5

3

f 4
2

f 2
0

ξS

(4π)2 dξH

d lnµ
= (1 + 6ξH)(2y2

t −
3

4
g2

2 −
3

20
g2

1 + 2λH)−
λHS

3
(1 + 6ξS ) +

+
f 2
0

3
ξH(1 + 6ξH)(2 + 3ξH)−

5

3

f 4
2

f 2
0

ξH

back to main slides



RGE for the gravitational couplings

Huge calculation ... (computer algebra practically needed!!)

(4π)2 df 2
2

d lnµ
= −f 4

2

(
133

10
+

NV

5
+

Nf

20
+

Ns

60

)
(4π)2 df 2

0

d lnµ
=

5

3
f 4
2 + 5f 2

2 f 2
0 +

5

6
f 4
0 +

f 4
0

12
(δab + 6ξab)(δab + 6ξab)

Here NV , Nf , Ns are the number of vectors, Weyl fermions and real scalars.

In the SM NV = 12, Nf = 45, Ns = 4.

We confirmed the calculations of [Avramidi (1995)]

rather than those of [Fradkin and Tseytlin (1981,1982)]

back to main slides

http://inspirehep.net/record/243653
http://www.sciencedirect.com/science/article/pii/0370269381907024
http://www.sciencedirect.com/science/article/pii/0550321382904448


Agravity inflation

All scalar fields in agravity are inflaton candidates

example (the minimal model): h, the Planckion s, the scalar σ in gµν

To see σ
R2

6f 2
0

→
R2

6f 2
0

−
(R + 3f 2

0 σ/2)2

6f 2
0︸ ︷︷ ︸

zero on−shell

By redefining gE
µν = gµν × f /M̄2

Pl with f = ξS s
2 + ξHh

2 + σ one obtains ...

√
|detgE |

{
M̄2

Pl

2
RE + M̄2

Pl

[
(∂µs)2 + (∂µh)2

2f
+

3(∂µf )2

4f 2

]
− U

}
+ · · ·

as well as their effective potential:

U =
M̄4

Pl

f 2

(
V +

3f 2
0

8
σ2

)
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as well as their effective potential:
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V +

3f 2
0
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Agravity inflation: a simple single field case

We identify inflaton = s by taking the other scalar fields heavy ...

Then we can easily convert s into a scalar sE with canonical kinetic term and find

ε ≡
M̄2

Pl

2

(
1

U

∂U

∂sE

)2

=
1

2

ξS

1 + 6ξS

(
βλS
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− 2

βξS
ξS

)2

η ≡ M̄2
Pl

1

U

∂2U

∂s2
E

=
ξS

1 + 6ξS

(
β(βλS

)

λS
− 2

β(βξS )

ξS
+

5 + 36ξS

1 + 6ξS

β2
ξS

ξ2
S

−
7 + 48ξS

1 + 6ξS

βλS
βξS

2λSξS

)
The slow-roll parameters are given by the β-functions ...

We can insert them in the formulae for the observable parameters As , ns and r = At
As

:

ns = 1− 6ε+ 2η, As =
U/ε

24π2M̄4
Pl

, r = 16ε

where everything is evaluated at about N ≈ 60 e-foldings when the inflaton sE (N) was

N =
1

M̄2
Pl

∫ sE (N)

0

U(sE )

U′(sE )
dsE
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