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b → s transitions in the LHC era

hadronic B → φK , B → η′K , Bs → φφ, B → Kπ, Bs → KK , . . .

radiative B → Xsγ , B → K∗γ , Bs → φγ , . . .

semi-leptonic B → Xs`` , B → K`` , B → K∗`` , Bs → φ`` , . . .

leptonic Bs → µµ

neutrino B → Kνν̄, B → K∗νν̄

I Main players to constrain new physics in the LHC era:
Leptonic, semi-leptonic & radiative exclusive decays

I Also inclusive decays still being updated by B factories
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Theory callenges in exclusive semi-leptonic decays
Perturbative & parametric uncertainties are under control. Main issues:

Form factors

I Systematic improvement
possible: lattice, light-cone sum
rules (LCSR); New results!

I Cross-check: heavy quark limit
+ corrections (not for BRs!)
(see previous talk)

Hadronic, non-FF corrections

I In particular “charm loop” at
low q2 and broad cc̄
resonances at high q2:
Dominant uncertainty and
currently only educated guess

[Khodjamirian et al. 1006.4945, Jäger and

Camalich 1212.2263, Lyon and Zwicky

1406.0566])David Straub (Universe Cluster) 4
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New results on Bd,s → K∗, ρ, φ, ω form factors
[Bharucha et al. 1503.05534]

I Updated LCSR computation
with increased precision

I Combined fit with recent lattice
computation [Horgan et al.

1310.3722, Horgan et al. 1501.00367] to
obtain predictions in full q2

range and as consistency check

I Good agreement except T23

(irrelevant for B → K ∗µµ obs.!)

Red: lattice
Blue: LCSR

Purple: combined fit
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Using the new form factor results
We provide all our form factors in terms of fit coefficients of a z-expansion that
can be downloaded including full error correlations as arXiv ancillary files in
JSON format.

David Straub (Universe Cluster) 6
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Global analysis of b → s transitions

Based on: [Altmannshofer and DS 1411.3161]

Observables included:

I Angular observables in B̄0 → K̄ ∗0µ+µ−

I (Differential) branching ratios of
I B̄0 → K̄∗0µ+µ−, B− → K∗−µ+µ−, B̄0 → K̄∗0µ+µ−, B− → K−µ+µ−,

Bs → φµ+µ−, Bs → µ+µ−, B̄0 → K̄∗0γ, B− → K∗−γ, B → Xsγ,
B → Xsµ

+µ−,

(NB: full LCSR, lattice form factors crucial for BR predictions)

I Including LHCb, ATLAS, CMS, BaBar, Belle, CDF (+ new LHCb result –
thanks to the LHCb collaboration for sharing the data)

I In total, 88 measurements of 76 different observables

See also: [Descotes-Genon et al. 1307.5683, Beaujean et al. 1310.2478, Hurth and Mahmoudi

1312.5267, Hurth et al. 1410.4545]
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Model-independent new physics analysis
I NP modifies coefficients of local non-renormalizable operators

O(′)
7 ∝ mb

e
(s̄σµνPR(L)b)Fµν O(′)

9 ∝ (s̄γµPL(R)b)(¯̀γµ`) O(′)
10 ∝ (s̄γµPL(R)b)(¯̀γµγ5`)

I Same Wilson coefficients enter many different processes

Decay C(′)
7 C(′)

9 C(′)
10 C(′)

S,P

B → (Xs,K ∗)γ X

B → (Xs,K (∗))`+`− X X X

Bs → µ+µ− X X

David Straub (Universe Cluster) 9
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Fit methodology

We construct a χ2 containg 88 measurements of 76 different observables by 6
different experiments

χ2(~CNP) =
[
~Oexp − ~Oth(~CNP)

]T
[Cexp + Cth]−1

[
~Oexp − ~Oth(~CNP)

]
.

Ci = CSM
i + CNP

i

I Full dependence on Wilson coefficients contained in ~Oth

I NP dependence neglected but all correlations retained in Cth

I Theory correlations have an important impact

David Straub (Universe Cluster) 10



Introduction Model-independent analysis Implications for NP models Conclusions NP implications of b → s measurements

Fit result in the SM
I χ2

SM =116.9 for 88 measurements (p value 2.14 %)

Including also b → se+e− processes:
I χ2

SM =125.8 for 91 measurements (p value 0.92 %)

Biggest tensions: (careful, these observables are not independent! E.g. only P′5 or S5 in fit)

Decay obs. q2 bin SM pred. measurement pull

B̄0 → K̄∗0µ+µ− FL [2, 4.3] 0.81± 0.02 0.26± 0.19 ATLAS +2.9

B̄0 → K̄∗0µ+µ− FL [4, 6] 0.74± 0.04 0.61± 0.06 LHCb +1.9

B̄0 → K̄∗0µ+µ− S5 [4, 6] −0.33± 0.03 −0.15± 0.08 LHCb −2.2

B̄0 → K̄∗0µ+µ− P′5 [1.1, 6] −0.44± 0.08 −0.05± 0.11 LHCb −2.9

B̄0 → K̄∗0µ+µ− P′5 [4, 6] −0.77± 0.06 −0.30± 0.16 LHCb −2.8

B− → K∗−µ+µ− 107 dBR
dq2 [4, 6] 0.54± 0.08 0.26± 0.10 LHCb +2.1

B̄0 → K̄ 0µ+µ− 108 dBR
dq2 [0.1, 2] 2.71± 0.50 1.26± 0.56 LHCb +1.9

B̄0 → K̄ 0µ+µ− 108 dBR
dq2 [16, 23] 0.93± 0.12 0.37± 0.22 CDF +2.2

Bs → φµ+µ− 107 dBR
dq2 [1, 6] 0.48± 0.06 0.23± 0.05 LHCb +3.1

David Straub (Universe Cluster) 11
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Best-fit values for NP in individual Wilson coefficients

Coeff. best fit 1σ 2σ
√
χ2

b.f. − χ2
SM p [%]

CNP
7 −0.04 [−0.07,−0.01] [−0.10, 0.02] 1.42 2.4

C′7 0.01 [−0.04, 0.07] [−0.10, 0.12] 0.24 1.8

CNP
9 −1.07 [−1.32,−0.81] [−1.54,−0.53] 3.70 11.3

C′9 0.21 [−0.04, 0.46] [−0.29, 0.70] 0.84 2.0

CNP
10 0.50 [0.24, 0.78] [−0.01, 1.08] 1.97 3.2

C′10 −0.16 [−0.34, 0.02] [−0.52, 0.21] 0.87 2.0

CNP
9 = CNP

10 −0.22 [−0.44, 0.03] [−0.64, 0.33] 0.89 2.0

CNP
9 = −CNP

10 −0.53 [−0.71,−0.35] [−0.91,−0.18] 3.13 7.1

C′9 = C′10 −0.10 [−0.36, 0.17] [−0.64, 0.43] 0.36 1.8

C′9 = −C′10 0.11 [−0.01, 0.22] [−0.12, 0.33] 0.93 2.0

Significance of CNP
9 and CNP

9 = −CNP
10 virtually unchanged! CNP

9 |b.f. slightly smaller

χ2
SM =116.9 for 88 measurements (p = 2.14 %); b → se+e− not included

David Straub (Universe Cluster) 12
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. . . including also b → s e+e−

Coeff. best fit 1σ 2σ
√
χ2

b.f. − χ2
SM p [%]

CNP
7 −0.04 [−0.07,−0.02] [−0.10, 0.01] 1.52 1.1

C′7 0.00 [−0.05, 0.06] [−0.11, 0.11] 0.05 0.8

CNP
9 −1.12 [−1.34,−0.88] [−1.55,−0.63] 4.33 10.6

C′9 −0.04 [−0.26, 0.18] [−0.49, 0.40] 0.18 0.8

CNP
10 0.65 [0.40, 0.91] [0.17, 1.19] 2.75 2.5

C′10 −0.01 [−0.19, 0.16] [−0.36, 0.33] 0.09 0.8

CNP
9 = CNP

10 −0.20 [−0.41, 0.05] [−0.60, 0.33] 0.82 0.8

CNP
9 = −CNP

10 −0.57 [−0.73,−0.41] [−0.90,−0.27] 3.88 6.8

C′9 = C′10 −0.08 [−0.33, 0.17] [−0.58, 0.41] 0.32 0.8

C′9 = −C′10 −0.00 [−0.11, 0.10] [−0.22, 0.20] 0.03 0.8

χ2
SM =125.8 for 91 measurements (p = 0.92 %)
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Allowed regions for 2 (real) Wilson coefficients
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I Angular observables (new data)
prefer CNP

9 < 0, insensitive to CNP
10

I Branching ratios are compatible
with CNP

9 < 0 as well as the SM

Green: all branching ratios | Red: B → K∗µ+µ− angular observables | Blue: Global fit
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Allowed regions for 2 (real) Wilson coefficients
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Physics beyond the SM or unexpected hadronic effect?

I Hadronic effects like charm loop
are photon-mediated⇒
vector-like coupling to leptons
just like C9

I How to disentangle NP↔ QCD?
I Hadronic effect can have different q2 dependence
I Hadronic effect is lepton flavour universal (→ RK !)

David Straub (Universe Cluster) 15
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Important cross-check: q2 dependence of C9 best fit

0 5 10 15
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C
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Blue: full global fit | Green: full B → K∗µµ fit
NB: [6, 8] bin not included in full fits

I Fit to all B → K ∗µµ
measurements from all
experiments but split by q2 bins

I New physics interpretation:
should be q2-independent.
Consistent at ∼ 1σ.

I Form factor problem: expect to
show up at ends of spectrum
where one method (LCSR,
lattice) dominates. Not the case!

I Charm loop: expect to dominate
at low q2 and grow towards the
J/ψ. Possible interpretation.

David Straub (Universe Cluster) 16
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Helicity dependence of shift in C9
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Blue: full global fit | Green: full B → K∗µµ fit
NB: [6, 8] bin not included in full fits

I Charm effect corresponds to
q2-dependent shift of C9,
possibly different in H0 and H−
helicity amplitudes

I Shift in individual amplitudes
requires huge (crazy) values

I If it is a charm effect, it has to
enter in H0 and H− with the
same sign and roughly same
size (just like CNP

9 would)

Interesting hint or cruel
coincidence?
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Violation of lepton flavour universality?

RK =
BR(B → Kµ+µ−)[1,6]

BR(B → Ke+e−)[1,6]
= 0.745+0.090

−0.074 ± 0.036 , RSM
K ' 1.00

I Impossible to explain by hadronic effect!

I Just what one would expect if B → K ∗µ+µ− tensions are due to NP
involving only muons
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Global fit of b → sµµ and b → see
(cf. [Ghosh et al. 1408.4097, Hurth et al. 1410.4545])
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Future tests of LFU

Spectacular deviations in B → K ∗µ+µ− vs. B → K ∗e+e− angular
observables and others can distinguish between different scenarios!

Observable Ratio of muon vs. electron mode

CNP
9 = −1.5 −1.5 −0.7 −1.3

C′9 = 0 0.8 0 0

CNP
10 = 0 0 0.7 0.3

107 dBR
dq2 (B̄0 → K̄∗0`+`−)[1,6] 0.83 0.77 0.79 0.81

107 dBR
dq2 (B̄0 → K̄∗0`+`−)[15,22] 0.76 0.69 0.76 0.75

AFB(B̄0 → K̄∗0`+`−)[4,6] 0.18 0.10 0.75 0.27

S5(B̄0 → K̄∗0`+`−)[4,6] 0.66 0.66 0.93 0.71

108 dBR
dq2 (B+ → K +`+`−)[1,6] 0.75 0.82 0.77 0.74

108 dBR
dq2 (B+ → K +`+`−)[15,19] 0.75 0.83 0.77 0.75

David Straub (Universe Cluster) 19
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If the tensions are due to new physics . . .

I . . . they are unlikely to be induced by a loop effect
(SM C9,10 are not chirality suppressed, CKM suppression weak)

I Example: MSSM [Altmannshofer and DS 1308.1501, Altmannshofer and DS 1411.3161]

bL sLb̃L s̃L

W̃ W̃

ℓ̃µ µ

(e)
I Loop-induced Z -penguin can give a non-negligible contribution, but lepton

flavour universal and with C9 � C10

David Straub (Universe Cluster) 21
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Tree-level new physics in b → sµ+µ−

s-channel: Z ′ boson

[Altmannshofer and DS 1308.1501, Gauld

et al. 1308.1959, Buras and Girrbach

1309.2466, Gauld et al. 1310.1082, Buras et al.

1311.6729, Altmannshofer et al.

1403.1269, Buras et al. 1409.4557, Glashow

et al. 1411.0565, Crivellin et al.

1501.00993, Altmannshofer and DS

1411.3161, Crivellin et al. 1503.03477]

t-channel: scalar or vector leptoquark

[Hiller and Schmaltz 1408.1627, Biswas et al.

1409.0882, Buras et al. 1409.4557, Sahoo and

Mohanta 1501.05193, Hiller and Schmaltz

1411.4773]

David Straub (Universe Cluster) 22
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Z ′ models

I Stringent constraints on couplings: bsZ ′ from Bs mixing, eeZ ′ from LEP,
uuZ ′, ddZ ′ from LHC

Selection of interesting models/limiting cases:

I Coupling to Lµ − Lτ
[Altmannshofer et al. 1403.1269, Crivellin et al. 1501.00993, Crivellin et al. 1503.03477]

I Effect in C9 only, violation of LFU

I Composite Higgs with partially composite muons [Niehoff et al. 1503.03865]

I CNP
9 = −CNP

10 , violation of LFU

I Coupling to 3rd generation leptons in the flavour basis
[Glashow et al. 1411.0565]

I CNP
9 = −CNP

10 , violation of LFU, lepton flavour violation
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Leptoquark models

I Can be spin 0 or 1, different representations possible

I Single leptoquark leads to CNP
9 = ±CNP

10

I Cannot be lepton flavour universal and conserving at the same time!
(see e.g. [Buras et al. 1409.4557, Varzielas and Hiller 1503.01084])

I measurements of RK (∗) and searches for b → s e±µ∓ and µ→ eγ
should be able to test these models with zero hadronic uncertainties!
(Barring more contrived cases with cancellations . . . )
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Conclusions & Outlook

I The B → K∗µ+µ− anomaly persists. Solution with new physics in C9

preferred globally over SM by 3.7σ, including RK by 4.3σ

I q2 dependence indicates that (unexpectedly) huge charm effect mimicking
CNP

9 < 0 at intermediate q2 could solve the tensions as well

Shopping list to solve this puzzle

I Measure RK∗ and ratio of B → K ∗`+`− (` = e, µ) angular observables

I Search for B → K (∗)e±µ∓ and similar LFV decays

I Improve precision on BR(Bs → µ+µ−) (to pin down C10)
I Theory:

I Fit the “charm loop” from data assuming the SM and discuss if such a huge
effect is conceivable

I More reliable estimates including strong phase
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Bonus material
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Backup NP implications of b → s measurements I

CNP
10 vs. C′10
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Green: all branching ratios | Red: B → K∗µ+µ− angular observables | Blue: Global fit
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Comparing new physics predictions for P′5
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I Blue dashed:
CNP

9 = −1.1 fits best at
intermediate q2

I Green dotted:
CNP

9 = −CNP
10 = −0.55

fits slightly better in first
and last bin

I Cyan: Negative C′9 (here
−1.5) is the only way
(with 1 coefficient) to
suppress |P′5| in 1st and
4th bin
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Comparing new physics predictions for FL
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I CNP
9 < 0 and

CNP
9 = −CNP

10 < 0
scenarios predict
suppression of FL

I C′9 < 0 predicts
enhancement of FL – not
supported by the data
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Fits with increased uncertainties

1. Nominal fit

Coeff. best fit 1σ 2σ
√
χ2

b.f. − χ2
SM p [%]

CNP
7 −0.04 [−0.07,−0.01] [−0.10, 0.02] 1.42 2.4

C′7 0.01 [−0.04, 0.07] [−0.10, 0.12] 0.24 1.8

CNP
9 −1.07 [−1.32,−0.81] [−1.54,−0.53] 3.70 11.3

C′9 0.21 [−0.04, 0.46] [−0.29, 0.70] 0.84 2.0

CNP
10 0.50 [0.24, 0.78] [−0.01, 1.08] 1.97 3.2

C′10 −0.16 [−0.34, 0.02] [−0.52, 0.21] 0.87 2.0

CNP
9 = CNP

10 −0.22 [−0.44, 0.03] [−0.64, 0.33] 0.89 2.0

CNP
9 = −CNP

10 −0.53 [−0.71,−0.35] [−0.91,−0.18] 3.13 7.1

C′9 = C′10 −0.10 [−0.36, 0.17] [−0.64, 0.43] 0.36 1.8

C′9 = −C′10 0.11 [−0.01, 0.22] [−0.12, 0.33] 0.93 2.0
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Fits with increased uncertainties

2. Doubled form factor uncertainties

Coeff. best fit 1σ 2σ
√
χ2

b.f. − χ2
SM p [%]

CNP
7 −0.04 [−0.07,−0.01] [−0.10, 0.03] 1.22 5.6

C′7 0.01 [−0.05, 0.06] [−0.11, 0.11] 0.12 4.6

CNP
9 −1.25 [−1.51,−0.96] [−1.74,−0.63] 3.62 21.1

C′9 0.16 [−0.21, 0.53] [−0.57, 0.91] 0.43 4.7

CNP
10 0.41 [0.11, 0.73] [−0.17, 1.09] 1.39 6.

C′10 −0.13 [−0.36, 0.11] [−0.60, 0.34] 0.55 4.8

CNP
9 = CNP

10 −0.26 [−0.49, 0.00] [−0.69, 0.33] 0.99 5.2

CNP
9 = −CNP

10 −0.65 [−0.91,−0.41] [−1.18,−0.18] 2.83 12.4

C′9 = C′10 −0.10 [−0.39, 0.19] [−0.70, 0.47] 0.35 4.7

C′9 = −C′10 0.09 [−0.07, 0.25] [−0.23, 0.40] 0.56 4.8
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Fits with increased uncertainties

3. Doubled non-form factor hadronic uncertainties

Coeff. best fit 1σ 2σ
√
χ2

b.f. − χ2
SM p [%]

CNP
7 −0.03 [−0.06, 0.01] [−0.09, 0.04] 0.79 5.5

C′7 0.02 [−0.03, 0.07] [−0.09, 0.12] 0.38 5.1

CNP
9 −1.21 [−1.51,−0.87] [−1.78,−0.51] 3.31 18.3

C′9 0.27 [−0.03, 0.56] [−0.33, 0.85] 0.9 5.6

CNP
10 0.44 [0.18, 0.72] [−0.06, 1.01] 1.74 7.5

C′10 −0.20 [−0.40, 0.01] [−0.61, 0.22] 0.96 5.7

CNP
9 = CNP

10 −0.10 [−0.36, 0.19] [−0.58, 0.52] 0.37 5.1

CNP
9 = −CNP

10 −0.48 [−0.68,−0.29] [−0.89,−0.11] 2.66 12.

C′9 = C′10 −0.13 [−0.42, 0.15] [−0.71, 0.42] 0.46 5.2

C′9 = −C′10 0.13 [0.00, 0.26] [−0.13, 0.39] 1.02 5.8
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Plots including also b → s e+e−
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I Green dashed: nominal fit
(only b → sµ+µ−)

I Blue: Fit including also
b → s e+e−

David Straub (Universe Cluster) 31



Backup NP implications of b → s measurements I

Plots including also b → s e+e−

-3 -2 -1 0 1 2

-2

-1

0

1

2

Re(C9
NP)

R
e(

C
9 )

I Green dashed: nominal fit
(only b → sµ+µ−)

I Blue: Fit including also
b → s e+e−

David Straub (Universe Cluster) 31



Backup NP implications of b → s measurements I

Plots including also b → s e+e−

-2 -1 0 1 2

-2

-1

0

1

2

Re(C10
NP)

R
e(

C
1

0
)

I Green dashed: nominal fit
(only b → sµ+µ−)

I Blue: Fit including also
b → s e+e−

David Straub (Universe Cluster) 31
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Plots with increased uncertainties
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I Red: doubled form factor
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I Green: doubled non-form
factor hadronic
uncertainties
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Backup NP implications of b → s measurements I

Showing basis independence
Taking into account all theoretical correlations and the experimental ones
provided by LHCb, the fits are independent of the basis chosen for angular
observables.

Nominal fit
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* No, I didn’t accidentaly put the same plot twice ;)
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B0 → K∗0µ+µ−

Observable q2 bin SM prediction

107 dBR
dq2

[0.1, 1] 1.083± 0.074± 0.151± 0.057
[1, 2] 0.511± 0.030± 0.069± 0.017
[2, 3] 0.459± 0.027± 0.064± 0.015
[3, 4] 0.467± 0.028± 0.062± 0.018
[4, 5] 0.494± 0.031± 0.062± 0.023
[5, 6] 0.530± 0.036± 0.063± 0.029

[1.1, 2.5] 0.488± 0.067± 0.067± 0.015
[2.5, 4] 0.464± 0.062± 0.062± 0.017
[4, 6] 0.512± 0.063± 0.063± 0.026

AFB

[0.1, 1] −0.088± 0.001± 0.009± 0.001
[1, 2] −0.140± 0.003± 0.029± 0.010
[2, 3] −0.078± 0.003± 0.018± 0.019
[3, 4] 0.002± 0.003± 0.009± 0.025
[4, 5] 0.077± 0.004± 0.018± 0.028
[5, 6] 0.144± 0.006± 0.026± 0.030

[1.1, 2.5] −0.124± 0.027± 0.027± 0.013
[2.5, 4] −0.018± 0.009± 0.009± 0.023
[4, 6] 0.112± 0.022± 0.022± 0.029

FL

[0.1, 1] 0.308± 0.009± 0.053± 0.018
[1, 2] 0.738± 0.008± 0.045± 0.021
[2, 3] 0.831± 0.002± 0.031± 0.012
[3, 4] 0.820± 0.002± 0.034± 0.007
[4, 5] 0.776± 0.003± 0.040± 0.012
[5, 6] 0.723± 0.004± 0.045± 0.019

[1.1, 2.5] 0.776± 0.040± 0.040± 0.018
[2.5, 4] 0.825± 0.033± 0.033± 0.007
[4, 6] 0.749± 0.043± 0.043± 0.016
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B0 → K∗0µ+µ−

Observable q2 bin SM prediction

S4

[0.1, 1] 0.097± 0.000± 0.004± 0.002
[1, 2] 0.023± 0.004± 0.008± 0.009
[2, 3] −0.081± 0.004± 0.013± 0.013
[3, 4] −0.151± 0.003± 0.016± 0.013
[4, 5] −0.198± 0.002± 0.016± 0.013
[5, 6] −0.228± 0.001± 0.015± 0.011

[1.1, 2.5] −0.009± 0.009± 0.009± 0.011
[2.5, 4] −0.135± 0.016± 0.016± 0.013
[4, 6] −0.213± 0.016± 0.016± 0.012

S5

[0.1, 1] 0.247± 0.002± 0.009± 0.004
[1, 2] 0.119± 0.005± 0.015± 0.020
[2, 3] −0.077± 0.005± 0.015± 0.027
[3, 4] −0.212± 0.003± 0.021± 0.028
[4, 5] −0.300± 0.005± 0.023± 0.025
[5, 6] −0.356± 0.006± 0.021± 0.022

[1.1, 2.5] 0.059± 0.014± 0.014± 0.023
[2.5, 4] −0.182± 0.020± 0.020± 0.028
[4, 6] −0.329± 0.022± 0.022± 0.024
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B0 → K∗0µ+µ−

Observable q2 bin SM prediction

P′4

[0.1, 1] 0.252± 0.003± 0.006± 0.006
[1, 2] 0.058± 0.010± 0.019± 0.022
[2, 3] −0.232± 0.012± 0.028± 0.042
[3, 4] −0.413± 0.006± 0.022± 0.035
[4, 5] −0.487± 0.003± 0.017± 0.023
[5, 6] −0.518± 0.002± 0.015± 0.016

[1.1, 2.5] −0.023± 0.023± 0.023± 0.029
[2.5, 4] −0.375± 0.024± 0.024± 0.038
[4, 6] −0.502± 0.016± 0.016± 0.019

P′5

[0.1, 1] 0.643± 0.001± 0.009± 0.014
[1, 2] 0.297± 0.010± 0.026± 0.041
[2, 3] −0.223± 0.015± 0.041± 0.084
[3, 4] −0.579± 0.011± 0.037± 0.077
[4, 5] −0.738± 0.014± 0.033± 0.057
[5, 6] −0.809± 0.016± 0.031± 0.042

[1.1, 2.5] 0.154± 0.032± 0.032± 0.055
[2.5, 4] −0.504± 0.038± 0.038± 0.081
[4, 6] −0.774± 0.032± 0.032± 0.049
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