Theory interpretation of $B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$

Joaquim Matias
Universitat Autònoma de Barcelona

In collaboration with: S.Descotes-Genon, L. Hofer and J. Virto
Based on: DMV'13 Phys. Rev. D88 (2013) 074002
DHMV'14, JHEP 1412 (2014) 125 and 1503.03328 , HP'15 1502.00920

April 23, 2015

Motivation

For a long time ago...
\Rightarrow flavour transitions have been used as a probe to explore the fundamental theory beyond SM.

Our target: Decode the short distance physics to find a smoking gun of BSM

BUT, like in the film there is always the good, the bad and the ugly.
The good: Wilson coefficients of electromagnetic, semileptonic, scalars and chirally flipped operators.
$\mathcal{O}_{7, \mathbf{7}^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R, L} b\right) F^{\mu \nu}, \quad \mathcal{O}_{\mathbf{9 , 9}} \mathbf{9}^{\prime}=\frac{\mathbf{e}^{\mathbf{2}}}{\mathbf{1 6} \pi^{2}}\left(\overline{\mathbf{s}} \gamma_{\mu} \mathbf{P}_{\mathbf{L}, \mathbf{R}} \mathbf{b}\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \quad \mathcal{O}_{\mathbf{1 0 , 1 0}}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L, R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$.

The bad: Matrix elements: Form Factors, ...
The ugly: Hadronic uncertainties: factorizable \& non-factorizable power corrections, duality violations at low-recoil...

Our main tool: The 4-body decay $\mathbf{B} \rightarrow \mathbf{K}^{*}(\rightarrow \mathbf{K} \pi) \mu^{+} \mu^{-}$will allow to test Wilson coefficients with an unprecedented precision.

On theory side:

Traditional Analysis: BR, F_{L} and $A_{F B}$, its zero being the most interesting observable:

$$
C_{9}^{\mathrm{eff}}\left(q_{0}^{2}\right)+2 \frac{m_{b} M_{B}}{q_{0}^{2}} C_{7}^{\mathrm{eff}}=0
$$

no hadronic uncertainty at LO.
First step beyond TA: A_{T}^{2} in 2005 (now named P_{1})
...first example of a FFI (at LO) observables for $q^{2} \leq 9 \mathrm{GeV}^{2}$.
Next step: A set of $F F I$ or optimized observables: $\mathbb{P}_{1}, \mathbb{P}_{2}$ (originally $A_{7}^{\text {re }}$), $\mathbb{P}_{4}^{\prime}, \mathbb{P}_{5}^{\prime}, \mathbb{P}_{6}^{\prime}, \mathbb{P}_{8}^{\prime}$ or \mathbf{P}_{3}

- An exact cancellation of soft form factor at LO (next slide).
- Good experimental accessibility.
combined with $B R, F_{L}$ or $A_{F B}$ and the S-wave observables $F_{S}, A_{S}, A_{S}^{4,5}$ (the rest are not independent)

On experimental side:

From uniangular distributions \rightarrow folded distributions \rightarrow full angular analysis.

Large-recoil: $0.1 \leq q^{2} \leq 9 \mathrm{GeV}^{2}$

"Improved QCDF approach": QCDF+ symmetry relations at large-recoil among FF:

$$
\begin{gathered}
\frac{m_{B}}{m_{B}+m_{K^{*}}} V\left(q^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} A_{1}\left(q^{2}\right)=T_{1}\left(q^{2}\right)=\frac{m_{B}}{2 E} T_{2}\left(q^{2}\right)=\xi_{\perp}(E) \\
\frac{m_{K^{*}}}{E} A_{0}\left(q^{2}\right)=\frac{m_{B}+m_{K^{*}}}{2 E} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{K^{*}}}{m_{B}} A_{2}\left(q^{2}\right)=\frac{m_{B}}{2 E} T_{2}\left(q^{2}\right)-T_{3}\left(q^{2}\right)=\xi_{\|}(E)
\end{gathered}
$$

\Rightarrow Transparent, valid for ANY FF parametrization (BZ, KMPW,...) and easy to reproduce.
\Rightarrow Dominant correlations automatically implemented.
\Rightarrow From the observation that at LO in $1 / m_{b}, \alpha_{s}$ and large-recoil limit (E_{K}^{*} large):

$$
\begin{aligned}
& A_{\perp}^{L, R}=\sqrt{2} N m_{B}(1-\hat{s})\left[\left(\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{10}^{\prime}\right)+\frac{2 \hat{m}_{b}}{\hat{s}}\left(\mathcal{C}_{7}^{\text {eff }}+\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\perp}\left(E_{K^{*}}\right), \\
& A_{\|}^{L, R}=-\sqrt{2} N m_{B}(1-\hat{s})\left[\left(\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10}^{\prime}\right)+\frac{2 \hat{m}_{b}}{\hat{s}}\left(\mathcal{C}_{7}^{\text {eff }}-\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\perp}\left(E_{K^{*}}\right) \\
& A_{0}^{L, R}=-\frac{N m_{B}(1-\hat{s})^{2}}{2 \hat{m}_{K^{*}} \sqrt{\hat{s}}}\left[\left(\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{9}^{\text {eff' }}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10}^{\prime}\right)+2 \hat{m}_{b}\left(\mathcal{C}_{7}^{\text {eff }}-\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\| \|}\left(E_{K^{*}}\right) .
\end{aligned}
$$

\Rightarrow Symmetry Breaking corrections (α_{s} and power corrections) are added in our computation.

Idea behind the construction of clean or optimized observables $P_{i}^{(\prime)}$:
Cancel the soft form factor dependence at LO exactly as for the zero of $A_{F B}$
\Rightarrow natural observables in this framework.

- In summary we include in our latest predictions:
- known α_{s} factorizable and non-factorizable corrections from QCDF.
- factorizable power corrections (using a systematic procedure for each FF, see later) Other approaches uses full form factors to include it.
- non-factorizable power corrections including charm-quark loops.

$$
\text { Low-recoil: } 15 \leq q^{2} \leq 19 \mathrm{GeV}^{2}
$$

We have implemented Lattice Form Factors
\Rightarrow Due to the presence of many $c \bar{c}$ resonances in this region we integrate over a large bin and use duality arguments.

- Form Factors: Different parametrizations possible (BZ or KMPW).

Goal: Minimize dependence of error predictions on the choice.

$$
\mathbf{P}_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R *} A_{\perp}^{R}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}\right)}}=c_{1}+\mathcal{O}\left(\alpha_{5} \xi_{\perp, \|}\right) \quad \mathbf{S}_{5}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R *} A_{\perp}^{R}\right)}{\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{0}\right|^{2}}=\frac{c_{1} \xi_{\perp} \xi_{\|}}{c_{2} \xi_{\perp}^{2}+c_{3} \xi_{\|}^{2}}
$$

$\Rightarrow \mathbf{S}_{5}$ is more sensitive to FF's choice
(idem for e.g. $\mathrm{F}_{\mathbf{L}}$)

- Factorizable power corrections:

General idea: : Parametrize power corrections to FF (at large-recoil):

$$
F\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

\Rightarrow fit a_{F}, b_{F}, \ldots to the full form factor F (taken e.g. from LCSR)
I. Respect correlations among $a_{F_{i}}, b_{F_{i}}, \ldots$. Power corrections are constrained from:

- exact kinematic FF relations at $q^{2}=0$. Example $a_{T 1}=a_{T 2}$ from $T_{1}(0)=T_{2}(0)$
- definition of input scheme to fix $\xi_{\perp, \|}$. Example $a_{A 2}=\frac{m_{B}+m_{K *}}{m_{B}-m_{K *}} a_{A 1}$ from $\xi_{\|} \equiv c_{1} A_{1}\left(q^{2}\right)+c_{2} A_{2}\left(q^{2}\right)$
II. Choose the most appropriate scheme to reduce the impact of power corrections:
- input of J.C. '12 and '14: $\left\{T_{1}, A_{0}\right\}$ to define $\left\{\xi_{\perp}, \xi_{\|}\right\} \Rightarrow$ power corrections eliminated in T_{1} and A_{0}
- our input: $\left\{V, c_{1} A_{1}+c_{2} A_{2}\right\} \Rightarrow$ power corrections eliminated in V and minimized in A_{1}, A_{2}

\Rightarrow We single out the pieces not associated to FF $\mathcal{T}_{i}^{\text {had }}=\left.\mathcal{T}_{i}\right|_{C_{7}^{(1)} \rightarrow 0}$ entering $\left\langle K^{*} \gamma^{*}\right| H_{\text {eff }}|B\rangle$ and multiply each of them with a complex q^{2}-dependent factor:

$$
\mathcal{T}_{i}^{\text {had }} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\text {had }},
$$

with

$$
r_{i}(s)=r_{i}^{a} e^{i \phi_{i}^{a}}+r_{i}^{b} e^{i \phi_{i}^{b}}\left(s / m_{B}^{2}\right)+r_{i}^{c} e^{i \phi \frac{c}{c}}\left(s / m_{B}^{2}\right)^{2} .
$$

$r_{i}^{a, b, c} \in[0,0.1]$ and $\phi_{i}^{a, b, c} \in[-\pi, \pi]$: random scan and take the maximum deviation from the central values $r_{i}\left(q^{2}\right) \equiv 0$ to each side, to obtain asymmetric error bars.

(a)

(c)

(b)

(d)

Charm loop: Insertion of 4-quark operators $\left(\mathcal{O}_{1,2}^{c}\right)$ or penguin operators $\left(\mathcal{O}_{3-6}\right)$ induces a positive contribution in $C_{9}^{\text {eff. }}$. We followed LCSR partial computation and prescription from KMPW to recast the effect inside $C_{9}^{\text {eff }}$.

$$
\mathcal{C}_{9} \rightarrow \mathcal{C}_{9}+s_{i} \delta C_{9}^{K M P W}\left(q^{2}\right)
$$

even if KMPW says $s_{i}=1$, we allow s_{i} in a range $[-1,1]$.

- $\mathcal{O}\left(\Lambda / m_{b}\right)$ non-fact. corrections to the amplitudes beyond QCDF (not part of FF).
\Rightarrow We single out the pieces not associated to FF $\mathcal{T}_{i}^{\text {had }}=\left.\mathcal{T}_{i}\right|_{C_{7}^{(\prime)} \rightarrow 0}$ entering $\left\langle K^{*} \gamma^{*}\right| H_{\text {eff }}|B\rangle$ and multiply each of them with a complex q^{2}-dependent factor:

$$
\mathcal{T}_{i}^{\mathrm{had}} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\mathrm{had}}
$$

with

$$
r_{i}(s)=r_{i}^{a} e^{i \phi_{i}^{a}}+r_{i}^{b} e^{i \phi_{i}^{b}}\left(s / m_{B}^{2}\right)+r_{i}^{c} e^{i \phi_{i}^{c}}\left(s / m_{B}^{2}\right)^{2}
$$

$r_{i}^{a, b, c} \in[0,0.1]$ and $\phi_{i}^{a, b, c} \in[-\pi, \pi]$: random scan and take the maximum deviation from the central values $r_{i}\left(q^{2}\right) \equiv 0$ to each side, to obtain asymmetric error bars.

Charm loop: Insertion of 4-quark operators $\left(\mathcal{O}_{1,2}^{c}\right)$ or penguin operators $\left(\mathcal{O}_{3-6}\right)$ induces a positive contribution in $C_{9}^{\text {eff }}$. We followed LCSR partial computation and prescription from KMPW to recast the effect inside $C_{9}^{\text {eff }}$.

$$
\mathcal{C}_{9} \rightarrow \mathcal{C}_{9}+s_{i} \delta C_{9}^{K M P W}\left(q^{2}\right)
$$

even if KMPW says $s_{i}=1$, we allow s_{i} in a range $[-1,1]$.

Suspect 1: Factorizable power corrections (affect both P_{i} and S_{i})

P_{5}^{\prime}, S_{5} computed with our method:

- GREEN is KMPW FF
- RED is BZ FF

YELLOW in P_{5}^{\prime} is error computed by JC'12\&'14. Non optimal scheme for P_{5}^{\prime} is used.

YELLOW in S_{5} is error computed from JC (assuming $\delta F_{L}=0+$ correl.)

- P_{5}^{\prime} : Size of errors for KMPW or BZ predictions are the same (shift is due to central values shift).
- S_{5} : Size of errors are different using KMPW or BZ (source: form factor errors).
- The predictions for S_{5} or P_{5}^{\prime} using our method with BZ (red boxes) and the predictions from BZ-FF (B.S.Z.'15) approach (not shown in plot) are in excellent agreement.
- Consistency tests with lattice form factors can also be used to discern the size of errors.

Suspect 2: Huge Charm-loop effect (affect both P_{i} and S_{i}) in [Lyon,Zwicky, hep-ph 1406.0566]

 In practical terms shift explanation from global $C_{9}^{N P}$ to modified q^{2} dep. 4-quark charm-loop $h\left(q^{2}\right)$ in$$
C_{9}^{\mathrm{eff}}(\eta)=C_{9}^{S M}+C_{9}^{N P}+\eta h\left(q^{2}\right) \text { and in } C_{9}^{\prime}\left(\eta^{\prime}\right) \quad \text { with } \quad \eta+\eta^{\prime}=-2.5
$$

modification of h comes from the extrapolation of the low-recoil $c \bar{c}$ resonances to large-recoil.

normal scenario is black line

- The structure in the region $4 \leq q^{2} \leq 9 \mathrm{GeV}^{2}$ altered: P_{2} and P_{5}^{\prime} has more zeroes. If this effect should be correct one expects $P_{5[6,8]}^{\prime}$ above or equal to $P_{5[4,6]}^{\prime}$, a global effect (like normal scenario or $C_{9}^{N P}$) predicts $P_{5[6,8]}^{\prime}$ below $P_{5[4,6]}^{\prime}$.
- The maximum of P_{2} weakly shifted by charm to the right direction if one imposes the experimental constraint from the zero of P_{2}. Instead for a global effect both maximum and zero of P_{2} shift.
- R_{K} : universal character of this charm effect cannot explain this tension. On the other hand, it can be explained by a NP scenario also explaining the $B \rightarrow K^{*} \mu \mu$ anomaly, if NP couplings preferentially to muons.

2013 data:

Definition:

$$
P_{1}=A_{T}^{(2)}=\frac{\left|A_{\perp}\right|^{2}-\left|A_{\|}\right|^{2}}{\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}
$$

Information: In SM the s quark is produced in helicity $-1 / 2$ by weak int. combined with light quark $\Rightarrow H_{+1}=0$ which implies $\left|A_{\perp}\right| \simeq\left|A_{\|}\right|$. $P_{1} \neq 0$ Test presence of RHC.

These tables inform of the shift with respect to the SM of a certain observable if you change one by one $\Delta C_{7,7^{\prime}}= \pm 0.1$ and $\Delta C_{9,10,9^{\prime}, 10^{\prime}}= \pm 1$. First row for positive change of corresponding Wilson coefficient, second for the negative. In green are the shifts in data direction (use only with 2015 data).

$\left\langle P_{1}^{\mathrm{SM}}\right\rangle_{[6,8]}=+0.018$	$\Delta C_{7}= \pm 0.1$	$\Delta C_{9}= \pm 1$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}
+	--	--	--	+0.11	+0.16	-0.37
-	--	--	--	-0.12	-0.16	+0.37

2015 data:

All bins consistent with SM (large errors).

$\left\langle P_{1}^{\mathrm{SM}}\right\rangle_{[6,8]}=+0.018$	$\Delta C_{7}= \pm 0.1$	$\Delta C_{9}= \pm 1$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}
+	--	--	--	+0.11	+0.16	-0.37
-	--	--	--	-0.12	-0.16	+0.37

2013 data:

Definition:

$$
P_{4}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\|}^{L *}+A_{0}^{R} A_{\|}^{R *}\right)}{\left\{\left|A_{0}\right|^{2} \times\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)\right\}^{\frac{1}{2}}}
$$

Information: Important observable for consistency check of the data.

2015 data:

- Upper bound on P_{1} from:

$$
\mathbf{P}_{5}^{\prime 2}-\mathbf{1} \leq \mathbf{P}_{1} \leq \mathbf{1}-\mathbf{P}_{4}^{\prime 2}
$$

- Relevant for $[4,6]$ and $[6,8]$ bins.
- Relevant at low-recoil.
- Enters two important tests on P_{2} (to be described in short)

Deviation in $\left\langle P_{2}\right\rangle_{[2,4.3]}$ in excellent agreement with anomaly in P_{5}^{\prime}

Definition:

$$
P_{2}=\frac{\operatorname{Re}\left(A_{\|}^{L} A_{\perp}^{L *}-A_{\|}^{R} A_{\perp}^{R *}\right)}{\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}}
$$

Information: P_{2} (orig. $A_{T}^{\text {re }}$) is the clean version of $A_{F B}$ and contains two important observables:

- Position of zero: $q_{0}^{2} \angle O=-2 \frac{m_{b} M_{B} C_{f}^{\text {eff }}}{C_{9}^{\text {eff }}\left(a_{0}^{2}\right)}$ (if $C_{i}^{\prime}=0$). Same as $A_{F B}$.
- Position and value of maximum of $P_{2}: \quad q_{1}^{2} \angle O=-2 \frac{m_{b} M_{B} C_{7}^{\text {eff }}}{\operatorname{Re} C_{9}^{e f f}\left(q_{1}^{2}\right)-C_{10}}\left(\right.$ if $C_{i}^{\prime}=0$ and $\left.\operatorname{Im}\left(C_{9}^{e f f}\right)^{2} \sim 0\right)$

2015 data:

Unfortunate fluctuation up of FL affects $\left\langle P_{2}\right\rangle_{[2.5,4]}$. This may change with other binning or more data. Definition:

$$
P_{2}=\frac{\operatorname{Re}\left(A_{\|}^{L} A_{\perp}^{L *}-A_{\|}^{R} A_{\perp}^{R *}\right)}{\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}}
$$

Information: P_{2} (orig. $A_{T}^{\text {re }} \mathrm{D} . \mathrm{B}$. et al.) is the clean version of $A_{F B}$ contains two important observables:

- Position of zero: $q_{0 L O}^{2}=-2 \frac{m_{b} M_{B} C_{7}^{\mathrm{eff}}}{C_{9}^{\text {eff }}\left(q_{0}^{2}\right)}$ (if $C_{i}^{\prime}=0$). Same as $A_{F B}$.
- Position and value of maximum of $P_{2}: \quad q_{1}^{2} L O=-2 \frac{m_{b} M_{B} C_{7}^{\text {eff }}}{\operatorname{Re} C_{9}^{\text {eff }}\left(q_{1}^{2}\right)-C_{10}}\left(\right.$ if $C_{i}^{\prime}=0$ and $\operatorname{Im}\left(C_{9}^{e f f}\right)^{2} \sim 0$)
 q^{2}

$\left\langle P_{2}\right\rangle_{[3,4]}=0.15$	$\Delta \mathbf{C}_{\mathbf{7}}= \pm \mathbf{0 . 1}$	$\boldsymbol{\Delta} \mathbf{C}_{\mathbf{9}}= \pm \mathbf{1}$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}

+	-0.30	-0.22	+0.04	--	---	---
-	+0.23	+0.18	-0.03	-0.03	---	---

$\left\langle P_{2}\right\rangle_{[6,8]}=-0.38$	$\boldsymbol{\Delta} \mathbf{C}_{\mathbf{7}}= \pm \mathbf{0 . 1}$	$\boldsymbol{\Delta} \mathbf{C}_{\mathbf{9}}= \pm \mathbf{1}$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}
+	-0.07	-0.09	-0.06	---	---	---
-	+0.11	+0.17	+0.05	---	---	---

The anomaly gets confirmed....

.... and consistency tests improved

2013 data:

Definition:

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\left\{\left|A_{0}\right|^{2} \times\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)\right\}^{\frac{1}{2}}}
$$

Information: In $S M C_{9}^{S M} \sim-C_{10}^{S M}$ this cancellation suppresses $A_{\perp, \|, 0}^{R} \ll A_{\perp, \|, 0}^{L}$ when semileptonic dominates $q^{2}>5-6 \mathrm{GeV}^{2}$. NP may alter this cancellation, leading to a sensitivity to right-handed amplitudes for $q^{2}>5-6 \mathrm{GeV}^{2}$.

Consistency with other data: $P_{4}^{\prime 2}\left(q_{0}^{2}\right)+P_{5}^{\prime 2}\left(q_{0}^{2}\right)=1+\eta\left(q_{0}^{2}\right)$
with $\eta\left(q_{0}^{2}\right) \sim 10^{-3}$ if no RHC. Nicely fulfilled by many data points in the bin [4-6].

$\left\langle P_{5}^{\prime S M}\right\rangle_{[4,6]}=-0.82$	$\Delta C_{7}= \pm 0.1$	$\Delta C_{9}= \pm 1$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}
+	-0.11	-0.15	-0.10	-0.11	-0.06	+0.21
-	+0.16	+0.28	+0.09	+0.15	+0.10	-0.21

2013 data:

2015 data:

Example of error size of $\operatorname{bin}[4,6]$: $-0.816_{-0.061}^{+0.029+0.017}{ }_{-0.0 .060}+0.0000{ }_{-0.008}{ }_{-0.082}^{0.069}(\mathrm{PAR}+\mathrm{FF}+\mathrm{FAC}+\mathrm{NF}+\mathrm{CHARM})$
Consistency with other data: $P_{4}^{\prime 2}\left(q_{0}^{2}\right)+P_{5}^{\prime 2}\left(q_{0}^{2}\right)=1+\eta\left(q_{0}^{2}\right)$
with $\eta\left(q_{0}^{2}\right) \sim 10^{-3}$ if no RHC. Nicely fulfilled by many data points in the bin [4-6].

$\left\langle P_{5}^{\prime S M}\right\rangle_{[6,8]}=-0.94$	$\Delta C_{7}= \pm 0.1$	$\Delta C_{9}= \pm 1$	ΔC_{10}	ΔC_{7}^{\prime}	ΔC_{9}^{\prime}	ΔC_{10}^{\prime}
+	-0.04	-0.07	-0.07	-0.08	-0.08	+0.19
-	+0.07	+0.19	+0.09	+0.10	+0.11	-0.18

2013 data (to be updated):
2015 data:

Consistency test on data compare $\mathbf{P}_{2}^{\exp }$ with $\mathbf{P}_{2}=\mathbf{f}\left(\mathbf{P}_{1}^{\exp }, \mathbf{P}_{4,5}^{\text {exp }}\right)$ (assume: no new weak phases, scalars):

$$
P_{2}=\frac{1}{2}\left(P_{4}^{\prime} P_{5}^{\prime}+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)}\right)
$$

- If $P_{2}=-\epsilon$ and $P_{4}^{\prime}=1+\delta\left(P_{1}<-2 \delta\right)$ then $\mathbf{P}_{5}^{\prime} \leq-\mathbf{2} \epsilon /(\mathbf{1}+\delta)$

2013: $\left\langle P_{2}\right\rangle_{[4.3,8.68]} \sim-0.25$ and $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]} \sim-0.19$ approx. $\epsilon=-0.25$ and $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]} \leq-0.42$
2015: $\left\langle P_{2}\right\rangle_{[6,8]} \sim-0.24$ and $\left\langle P_{5}^{\prime}\right\rangle_{[6,8]} \sim-0.5$ approx. $\epsilon=-0.24$ and $\left\langle P_{5}^{\prime}\right\rangle_{[6,8]} \leq-0.4$
Now P_{2} and P_{5}^{\prime} bins have the expected order! (in both [4,6] and $[6,8]$ bins)

The basis is completed by P_{6}^{\prime} and P_{8}^{\prime} observables (or P_{3}). They are sensitive to new weak phases.

2013 data:

2015 data:

They are quite compatible with SM, besides some local fluctuation.

Relevant Observables included: $B \rightarrow K^{*} \mu^{+} \mu^{-}\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in all 5 large-recoil + low-recoil), $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$and $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}, \mathcal{B}_{B \rightarrow X_{s} \gamma}, \mathcal{B}_{B \rightarrow X_{s} \mu^{+} \mu^{-}}, \mathcal{B}_{B s \rightarrow \mu^{+} \mu^{-}}, A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}$

Description of the method:

- minimisation of χ^{2} in order to determine the confidence regions under different hypotheses
- computation of pulls to compare different NP hypotheses.

Result (VERY PRELIMINARY NO CORRELATIONS INCLUDED!!)

Hypothesis	Best fit	pull
C_{9}^{NP}	-1.1	4.6
C_{10}^{NP}	0.62	2.4
C_{9}^{\prime}	-1.0	3.4
C_{10}^{\prime}	0.61	3.3

Hypothesis	Best fit	pull
$C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$	-0.62	4.0
$C_{9}^{\mathrm{NP}}=C_{10}^{\mathrm{NP}}$	-0.37	1.7
$C_{9}^{\prime}=C_{10}^{\prime}$	0.32	1.3
$C_{9}^{\mathrm{NP}}=C_{9}^{\prime}$	-0.67	4.3
$C_{9}^{\prime}=-C_{10}^{\prime}$	-0.42	3.6

Summary

- The best hypothesis is $C_{9}^{N P}<0$
- Two other scenarios are also highlighted corresponding to different patterns of Z^{\prime} couplings:
- $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$.
(left-handed $\mu \mu$ and bs).
- $C_{9}^{\mathrm{NP}}=C_{9}^{\prime}$.
(vector $\mu \mu$ and bs)

Letting two Wilson coefficients free

Be aware: Correlations (not yet included) possibly will have a large impact on these plots and the pulls!

Hypothesis	Best fit	pull
$\left(C_{7}^{\mathrm{NP}}, C_{9}^{\mathrm{NP}}\right)$	$(0.0,-1.1)$	$\mathbf{4 . 2}$
$\left(C_{9}^{\mathrm{NP}}, C_{10}^{\mathrm{NP}}\right)$	$(-1.1,0.2)$	4.2
$\left(C_{9}^{\mathrm{NP}}, C_{9}^{\prime}\right)$	$(-1.0,-0.1)$	4.2
$\left(C_{10}^{\mathrm{NP}}, C_{10}^{\prime}\right)$	$(0.5,0.6)$	$\mathbf{3 . 4}$

Again the main effect comes from C_{9}.

SM+charm means that we take KMPW adding long-distance charm (with both signs). Our third scenario (not in the plot) is in between the green and red NP predictions.

- In DMV'13 we proposed a \mathbf{Z}^{\prime} gauge boson contributing to $\mathcal{O}_{9}=e^{2} /\left(16 \pi^{2}\right)\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)$ with specific couplings as a possible explanation:

$$
\mathcal{L}^{q}=\left(\bar{s} \gamma_{\nu} P_{L} b \Delta_{L}^{s b}+\bar{s} \gamma_{\nu} P_{R} b \Delta_{R}^{s b}+\text { h.c. }\right) Z^{\prime \nu} \quad \mathcal{L}^{l e p}=\left(\bar{\mu} \gamma_{\nu} P_{L} \mu \Delta_{L}^{\mu \bar{\mu}}+\bar{\mu} \gamma_{\nu} P_{R} \mu \Delta_{R}^{\mu \bar{\mu}}+\ldots\right) Z^{\nu}
$$

$$
C_{\{9,10\}}^{\mathrm{NP}}=-\frac{1}{s_{W}^{2} g_{S M}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{L}^{s b} \Delta_{\{V, A\}}^{\mu \mu}}{\lambda_{t s}} \quad C_{\{9,10\}}^{\prime}=-\frac{1}{s_{W}^{2} g_{S M}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{R}^{s b} \Delta_{\{V, A\}}^{\mu \mu}}{\lambda_{t s}}
$$ notation from 1211.1896

$\Delta_{L}^{s b}$ with same phase as $\lambda_{t s}=V_{t b} V_{t s}^{*}$ (to avoid ϕ_{s}) like in MFV. Main constraint from $\Delta M_{B_{s}}$. Examples of the different scenarios for a $M_{Z^{\prime}}=1 \mathrm{TeV}$:

- SC1: $C_{9}^{N P}=-1.1, \Delta_{V}^{\mu \mu}=0.6$ and $\Delta_{L}^{b s}=-0.003$
- SC2: $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}=-0.62$, LHC to quarks and leptons, $\Delta_{V}^{\mu \mu}=-\Delta_{A}^{\mu \mu}=0.37$ and $\Delta_{L}^{b s}=-0.003$
- SC3: $C_{9}^{\text {NP }}=C_{9}^{\prime}=-0.67, V C$ to quarks and leptons, $\Delta_{V}^{\mu \mu}=0.52$ and $\Delta_{L}^{b s}=\Delta_{R}^{b s}=-0.007$

Many ongoing attempts to embed this kind of Z^{\prime} inside a model [U.Haisch, W.Altmannshofer, A.Buras,..]

- The anomaly in the third bin of P_{5}^{\prime} has been nicely confirmed by LHCb with $3 \mathrm{fb}^{-1}$ data in two bins [4,6] and [6,8]. Also some shift in P_{2} is observed.
- All consistency tests we have done so far are nicely fulfilled with $3 \mathrm{fb}^{-1}$ showing robustness of data.
- A global analysis including all new $3 \mathrm{fb}^{-1}$ data coming from $B \rightarrow K^{*} \mu \mu, B \rightarrow K \mu \mu, B_{s} \rightarrow \mu \mu$ and radiative confirms the solution $C_{9}^{\text {NP }}<0$ found with $1 \mathrm{fb}^{-1}$, other alternative scenarios like $C_{9}^{\text {NP }}=-C_{10}^{N P}$ or $C_{9}^{\text {NP }}=C_{9}^{\prime}$ also emerge.
- Is this all within $B \rightarrow K^{*} \mu \mu$? Not yet, P_{2} (zero and maximum) provides the most important cross check of the anomaly in P_{5}^{\prime} and can help to disentangle NP from an hadronic effect. New bins and/or amplitude analysis can recover $P_{2}^{\max }$. Stay tuned...
- NP explanation: a Z^{\prime} particle remains a possibility to explain the observed discrepancies also in R_{K} (coupling only to μ)
- An hadronic effect in C_{9} is mode dependent and q^{2}-dependent while $C_{9}^{\text {NP }}$ is a global effect. A separate analysis of exclusive modes under the hypothesis that only C_{9} gets a contribution can provide a consistency check of a global NP explanation. Already now the use of the [6,8] bin of $3 \mathrm{fb}^{-1}$ data in $B \rightarrow K^{*} \mu \mu$ challenges alternative explanations like a huge charm effect.

... when you have eliminated all the
Standard Model explanations, whatever remains, however improbable, must be New Physics.

Inspired by A. Conan Doyle not yet there but maybe not too far...stay tunned for $1 \mathrm{GeV}^{2}$ bins.
2. "BZ-FF" approach: Compute correlations using a specific LCSR computation.
\Rightarrow Factorizable $\mathcal{O}\left(\alpha_{s}\right)$ and factorizable p.c. included in a particular LCSR parametrization.
\Rightarrow Result attached to a single form factor parametrization with all choices (Borel param.,..).
\Rightarrow Extra pieces to be included/estimated in the predictions for S_{i} observables (used here):

- known α_{s} non-factorizable corrections from QCDF.
- non-factorizable power corrections and charm-quark loop effects

Summary: Main cross check of no errors here requires to compare it with 1 (restricting 1 to the subclass of same LCSR).
3. "Lattice" approach. Naturally set up for large- q^{2} but can be extend it to low- q^{2}.
\Rightarrow More free from model dependences than 2.
\Rightarrow Extrapolation at low- q^{2} has to be done carefully.
\Rightarrow Same additions as in 2 are required.
4. "Imperial" approach. This is not a FF treatment but a different approach to data based on exploiting the symmetries of the distribution.

- They fit for the amplitudes after fixing 3 of them to zero by means of the symmetries.
- The outcome is a set of parameters α, β, γ that contain the information on WC and FF.
- They naturally produce unbinned results.

