Rare Decays and other Electroweak b-physics Measurements at ATLAS and CMS

P. Ronchese - CMS/ATLAS collaborations

University and INFN Padova

50$^{\text{th}}$ Rencontres de Moriond - EW 2015

La Thuile, Aosta valley, Italy
Mars 14-21, 2015
Introduction

Rare decays:
- $\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+ \mu^-)$ measurement
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

CP violation:
- B_s^0 lifetime difference and CPV phase in $B_s^0 \rightarrow J/\psi \phi$
- $B_s^0 \rightarrow J/\psi f_0$ propaedeutic studies

Conclusions
Motivations to study HF physics at CMS & ATLAS

Look for indirect evidence or constraints to new physics beyond SM

- Tree level W exchange hardly modified by NP processes
- Exploit the sensitivity of some processes to loop diagrams at high mass scales
- Rare FCNC decays branching ratios modified by new degrees of freedom in the loops
- Angular analysis to probe specific terms in effective lagrangian
- Measure CP violation to investigate NP contributions to mixing processes
ATLAS and CMS experiments

Data samples

- $\sqrt{s} = 7 \text{ TeV}, \mathcal{L} \sim 5 \text{ fb}^{-1}$ (2011 run)
- $\sqrt{s} = 8 \text{ TeV}, \mathcal{L} \sim 20 \text{ fb}^{-1}$ (2012 run)

All shown results involve dimuons
Dedicated triggers developed for analyses
Selections: dimuon mass, p_T, displaced vertex, pointing angle
Outline

- Introduction
- Rare decays:
 - $\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+ \mu^-)$ measurement
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis
- CP violation:
 - B_s^0 lifetime difference and CPV phase in $B_s^0 \rightarrow J/\psi \phi$
 - $B_s^0 \rightarrow J/\psi f_0$ propaedeutic studies
- Conclusions
$B(B_{d,s}^0 \rightarrow \mu^+ \mu^-)$: SM predictions

- $B_{d,s}^0 \rightarrow \mu^+ \mu^-$ highly suppressed in the SM
 - FCNC: only at higher order processes (box, penguin)
 - Cabibbo suppressed: $|V_{ts(td)}|^2$
 - Helicity suppressed: $(m_{\mu}/m_B)^2$
 - Internal annihilation: $(f_B/m_B)^2$

New NLO-EW and NNLO-QCD corrections

C. Bobeth et al., PRL 112 (2014) 101801

- $\mathcal{B}(B_{s}^0 \rightarrow \mu^+ \mu^-)_{\text{SM}} = (3.65 \pm 0.23) \times 10^{-9}$
- $\mathcal{B}(B_{d}^0 \rightarrow \mu^+ \mu^-)_{\text{SM}} = (1.06 \pm 0.09) \times 10^{-10}$
$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+ \mu^-)$: beyond SM

Significant deviations predicted by theories beyond SM

- New degrees of freedom are present
- Discrimination among BSM theories from $\mathcal{R} \equiv \mathcal{B}(B_d^0 \rightarrow \mu^+ \mu^-)/\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$ ratio
- \mathcal{R} prediction by BSM theories with minimal flavour violation equal as in SM

BSM processes

NUHM
J.R. Ellis et al., JHEP 05 (2006) 063

MCPMFV
J.R. Ellis et al., PRD 76 (2007) 115011

Leptoquarks
S. Davidson et al., JHEP 11 (2010) 073

MSSM with large $\tan \beta$

P. Ronchese - CMS/ATLAS
$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-) : \text{search/measurement}$

$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-) \text{ determined by comparison with another channel}$

$$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-) = \frac{N_{\text{sig}} \epsilon_{\text{nrm}} f_u}{N_{\text{nrm}} \epsilon_{\text{sig}} f_{d,s}} \mathcal{B}(B^\pm \rightarrow J/\psi K^\pm \rightarrow \mu^+\mu^- K^\pm)$$

- Combinatorial (from sidebands)
- Non-peaking: semileptonic b-decays
- Peaking: $(B_{d,s}^0, \Lambda_b^0) \rightarrow hh'$ (from simulation)

Background:

- Combinatorial (from sidebands)
- Non-peaking: semileptonic b-decays
- Peaking: $(B_{d,s}^0, \Lambda_b^0) \rightarrow hh'$ (from simulation)

ATLAS($\sqrt{s} = 7$ TeV)

\[\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 1.5 \times 10^{-8} @ 95\% \text{ C.L.} \]

CMS($\sqrt{s} = 7, 8$ TeV)(*)

\[\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (2.8^{+1.0}_{-0.9}) \times 10^{-9} \]

\[\mathcal{B}(B_d^0 \rightarrow \mu^+\mu^-) = (4.4^{+2.2}_{-1.9}) \times 10^{-10} \]

(*) Changed vs. previously published on PRL

More infos at frame 28
B(B_{d,s}^0 \rightarrow \mu^+ \mu^-): updates & CMS+LHCb combination

<table>
<thead>
<tr>
<th>Updated quantity</th>
<th>old</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_u/f_s</td>
<td>3.91 ± 0.31</td>
<td>3.86 ± 0.22</td>
</tr>
<tr>
<td>B(\Lambda_b^0 \rightarrow p\mu^-\nu)</td>
<td>(6.50 ± 6.50) \times 10^{-4}</td>
<td>(4.94 ± 2.19) \times 10^{-4} event by event weights</td>
</tr>
</tbody>
</table>

Time dependent corrections:
- Decay time dependent selection: time dependent efficiency
- Superposition of different mass eigenstates: time dependent width

CMS+LHCb

arXiv:1411.4413

\[
\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}
\]

\[
\mathcal{B}(B_d^0 \rightarrow \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}
\]

More info at frames 28, 29
$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-)$: evolution

- Higher energy (up to $\sqrt{s} = 14$ TeV):
 - higher cross-section
- Higher luminosity (up to $L = 5 \times 10^{34}$ cm$^{-2}$s$^{-1}$):
 - larger events sample
 - higher pile-up (up to 140)

CMS evolution
- Improved muon system (for Run2, limited effect)
- Improved tracker (after LS2 & for HL-LHC)
- Improved trigger

Vertexing efficiency loss
Tracking efficiency loss

- f_u/f_s improved
 - Background estimation improved

CMS expectations

<table>
<thead>
<tr>
<th>$\mathcal{L}(\text{fb}^{-1})$</th>
<th>$\delta \mathcal{B}/\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-)$</th>
<th>$\delta \mathcal{B}/\mathcal{B}(B_d^0 \rightarrow \mu^+\mu^-)$</th>
<th>δR</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>13%</td>
<td>48%</td>
<td>50%</td>
</tr>
<tr>
<td>3000</td>
<td>11%</td>
<td>18%</td>
<td>21%</td>
</tr>
</tbody>
</table>

δR (at Run 300 GeV) = 33% ± 0.3%
Outline

- Introduction
- Rare decays:
 - $\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+ \mu^-)$ measurement
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis
- CP violation:
 - B_s^0 lifetime difference and CPV phase in $B_s^0 \rightarrow J/\psi \phi$
 - $B_s^0 \rightarrow J/\psi f_0$ propaedeutic studies
- Conclusions
Rare decays
CP violation
Conclusions
Backup

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $K^{*0} \rightarrow K^+ \pi^-$ angular analysis

Possible BSM physics effects through contributions in Wilson coefficients C_7, C_9 and C_{10}

Differential branching ratio

- Kinematic variables:
 - θ_L, θ_K, ϕ angles
 - $q^2 = m^2(\mu^+ \mu^-)$
- Parameters:
 - A_{FB}: muon forward/backward asymmetry
 - F_L: K^{*0} longitudinal polarization
 - F_S, A_S: $K^+ \pi^-$ S-wave contribution and interference
- Form-factor independent observables

- Events divided in q^2 bins
- $B^0 \rightarrow K^{*0}(J/\psi, \psi')$ regions removed
- ϕ angle integrated out

2011 data

More infos at frame 32
ATLAS

ATLAS-CONF-2013-038

Sequential fit:
- Yields from mass fit
- A_{FB}, F_L from angles fit
- F_S from BaBar

CMS

PLB 727 (2013) 77

Simultaneous fit:
- A_{FB}, F_L, F_S, A_S
- $d\beta/dq^2$ by comparison with $B^0 \rightarrow K^{*0} J/\psi$

More infos at frames 32,33
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay parameters compatible with other experiments

Parameters dependence on q^2 compatible with SM predictions at low and high q^2

Waiting for $\sqrt{s} = 8$ TeV results

Looking for form-factor independent observables
Outline

- Introduction
- Rare decays:
 - $B(B^0_{d,s} \rightarrow \mu^+\mu^-)$ measurement
 - $B^0 \rightarrow K^*\mu^+\mu^-$ angular analysis
- CP violation:
 - B^0_s lifetime difference and CPV phase in $B^0_s \rightarrow J/\psi\phi$
 - $B^0_s \rightarrow J/\psi f_0$ propaedeutic studies
- Conclusions
$B^0_s \rightarrow J/\psi \phi$: lifetime difference and CPV phase

Flavoured initial state: admixture of B_L and B_H

- Unflavoured final state:
 - direct and mixing-mediated decays
 - interference: phase $\phi_s \simeq -2\beta_s$
- Non-definite CP final state:
 - admixture of CP odd and even
 - components disentangled by time-dependent angular analysis: $\Theta = \theta, \varphi, \psi$

$|\Phi_s| < 0.05$ in MFV models

G.Isidori, arXiv:1302.0661

Reduced sensitivity of $\Delta \Gamma_s$ to physics beyond SM

J.Charles et al., PRD 84 (2011) 033005

$2\beta_s^{(SM)} = 0.0363^{+0.0016}_{-0.0015}$ rad

A.Lenz and U.Nierste, arXiv:1102.4274

$\Delta \Gamma_s^{(SM)} = 0.087 \pm 0.021$ ps$^{-1}$
Introduction

Rare decays

CP violation

Conclusions

Backup

$B_s^0 \to J/\psi\phi$: decay width parameters

Differential decay width

\[
\frac{d^4\Gamma(B_s^0(t))}{d\Theta dt} = f(\Theta, \alpha, ct) \propto \sum_{i=1}^{10} O_i(\alpha, ct) \cdot g_i(\Theta)
\]

\[
O_i(\alpha, ct) = N_i e^{-t/\tau} \left[a_i \cosh\left(\frac{1}{2} \Delta \Gamma_s ct\right) + b_i \sinh\left(\frac{1}{2} \Delta \Gamma_s ct\right) \right. \\
\left. \pm c_i \cos(\Delta m_s ct) \pm d_i \sin(\Delta m_s ct) \right]
\]

N_i, a_i, b_i, c_i, d_i terms depending on α parameters: \& Φ_s in b_i, d_i

- $A_\perp, A_0, A_\parallel, A_S$: P-wave and S-wave amplitudes
- $\delta_\perp, \delta_0, \delta_\parallel, \delta_S$: wave phases
- $|\lambda|$: direct CP violation
- $+(c_i, d_i)$ for B_s^0, $-(c_i, d_i)$ for \bar{B}_s^0

Parameters fit

- $\delta_0 = 0$, $|\lambda| = 1$ fixed
- $\delta_{S\perp} = \delta_S - \delta_\perp$
- Δm_s from PDG

$B_s^0 - \bar{B}_s^0$ discrimination

Other b flavour tagging

P. Ronchese - CMS/ATLAS

EW measurements with b at ATLAS and CMS - 17
$B_s^0 \rightarrow J/\psi\phi$: flavour tagging

- B_s^0/\bar{B}_s^0 flavour at production inferred from charge of decay products of the second b
- Charge-flavour correlation diluted (cascade, oscillations, ...)

ATLAS ($\sqrt{s} = 7$ TeV)

- combined muon charge
- combined jet charge

\[
\epsilon_{\text{tag}} = (32.1 \pm 0.01(\text{stat}))\% \\
P_{\text{tag}} = (1.45 \pm 0.05(\text{stat}))\%
\]

CMS ($\sqrt{s} = 8$ TeV)

- muon charge
- electron charge

\[
\epsilon_{\text{tag}} = (7.67 \pm 0.04(\text{stat}))\% \\
P_{\text{tag}} = (0.97 \pm 0.03(\text{stat}))\%
\]

Performances measured with $B^+ \rightarrow J/\psi K^+$ events

P. Ronchese - CMS/ATLAS

EW measurements with b at ATLAS and CMS - 18
$B_s^0 \rightarrow J/\psi\phi$: results

Unbinned maximum likelihood fit including per-event resolution and tagging probability terms

<table>
<thead>
<tr>
<th>ATLAS ($\sqrt{s} = 7$ TeV)</th>
<th>CMS ($\sqrt{s} = 8$ TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \Gamma_S [\text{ps}^{-1}]$</td>
<td>$0.053 \pm 0.021 \pm 0.010$</td>
</tr>
<tr>
<td>$\phi_S [\text{rad}]$</td>
<td>$0.12 \pm 0.25 \pm 0.05$</td>
</tr>
</tbody>
</table>

Results compatible with world averages and SM expectations

More infos at frame 34
$B^0_s \rightarrow J/\psi \phi$: evolution

ϕ_s error much bigger than theoretical uncertainty:
- more data needed...
- more difficult environment with increasing luminosity

ATLAS evolution

Tracker improvements:
- fourth pixel layer (for Run2)
- reduced pixel size (for HL-LHC)

Limited trigger bandwidth:
harder p_T,μ cuts with increasing luminosity

- 6 GeV at Phase-1
- 11 GeV at Phase-2

Higher tracker performances
- better vertex reconstruction
- proper decay time resolution improved by $\sim 30\%$

More infos at frame 35
$B_s^0 \to J/\psi \phi$: evolution

Estimated PU
- 60 at Phase-1
- 200 at Phase-2
No significant effect on time resolution

Signal yield estimated from 2012 data by applying muon p_T cuts and rescaling for efficiencies and luminosities

<table>
<thead>
<tr>
<th>ATLAS expectations</th>
<th>Expectations validated with 2011 measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}(fb^{-1})$</td>
<td>100</td>
</tr>
<tr>
<td>$p_T \mu$ cut [GeV]</td>
<td>6</td>
</tr>
<tr>
<td>$\sigma(\phi_s)$(stat)[rad]</td>
<td>0.054</td>
</tr>
</tbody>
</table>

More infos at frame 35
Outline

- Introduction
- Rare decays:
 - $\mathcal{B}(B^0_{d,s} \rightarrow \mu^+\mu^-)$ measurement
 - $B^0 \rightarrow K^{*0}\mu^+\mu^-$ angular analysis
- CP violation:
 - B^0_s lifetime difference and CPV phase in $B^0_s \rightarrow J/\psi\phi$
 - $B^0_s \rightarrow J/\psi f_0$ propaedeutic studies
- Conclusions
$B_s^0 \rightarrow J/\psi f_0$: study motivations

Alternative channel to measure ϕ_s

- f_0 is a scalar ($J^{PC} = 0^{++}$)
- The final state is a CP-odd eigenstate
- No need to disentangle two components
- Angular analysis no more needed

$$\Gamma(B_s^0/\bar{B}_s^0 \rightarrow J/\psi f_0) = \mathcal{N} e^{-\Gamma_{st}} \left\{ e^{\Delta \Gamma_{st}/2} (1 + \cos \phi_s) + e^{-\Delta \Gamma_{st}/2} (1 - \cos \phi_s) \right\}$$

Hadronic structure of $f_0(980)$

- quark-antiquark
- tetraquark
- $K\bar{K}$ molecule

Critical hadronic corrections

B_s^0 flavour at production

Tagged analysis

- Same technique used as for $B_s^0 \rightarrow J/\psi \phi$
- Tagging info added to $\sin \phi_s$
\[B_s^0 \rightarrow J/\psi f_0 : \text{BR measurement} \]

Propaedeutic studies

- \(\mathcal{B}(B_s^0 \rightarrow J/\psi f_0) \mathcal{B}(f_0 \rightarrow \pi^+\pi^-) / \mathcal{B}(B_s^0 \rightarrow J/\psi \phi) \mathcal{B}(\phi \rightarrow K^+K^-) \) has been measured.
- Lifetime and CPV measurement to come.

Event selection:

- \(J/\psi \) : dimuon originating from a displaced vertex
- \(f_0 \) : Two opposite-charge \(\pi \)
 \(|m_{\pi\pi} - 974 \text{ MeV}| < 50 \text{ MeV} \)
- \(\Phi \) : Two opposite-charge \(K \)
 \(|m_{KK} - 1020 \text{ MeV}| < 10 \text{ MeV} \)
$B^0_s \rightarrow J/\psi f_0 : \text{results}$

BR ratio measurement: systematic uncertainties cancellation

\[
R_{f_0/\phi} = \frac{\mathcal{B}(B^0_s \rightarrow J/\psi f_0)\mathcal{B}(f_0 \rightarrow \pi^+\pi^-)}{\mathcal{B}(B^0_s \rightarrow J/\psi \phi)\mathcal{B}(\phi \rightarrow K^+K^-)} = \frac{N_{f_0}^{\text{obs}}}{N_{\phi}^{\text{obs}}} \times \frac{\epsilon_{f_0}}{\epsilon_{\phi}}
\]

- Yield from unbinned max likelihood fit
- Efficiency from MC

CMS($\sqrt{s} = 7$ TeV) arXiv:1501.06089

\[
R_{f_0/\phi} = 0.140 \pm 0.013 \pm 0.018
\]

More infos at frame 27
ATLAS and CMS have produced significant EW results in HF physics

\(\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) \) have been measured

An angular analysis of \(B^0 \rightarrow K^{*0}\mu^+\mu^- \) have been performed

The CP violation phase \(\phi_s \) in \(B_s^0 \rightarrow J/\psi\phi \) decay has been measured

The study of the \(B_s^0 \rightarrow J/\psi f_0 \) decay begun

All results are, up to now, compatible with SM predictions

...but there’s still room to squeeze it further
Extra informations

BACKUP
$\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-)$: additional material

Signal and background discriminated by mean of a multivariate analysis (BDT):

- **ATLAS:**
 - cut on BDT output
- **CMS:**
 - events divided in 12 categories
 - dimuon invariant mass fitted simultaneously in all categories

Background from $\Lambda_b^0 \rightarrow p\mu^-\nu$ (CMS):

- mis-reconstruction probability strongly dependent on $q^2 = m_{\mu\nu}^2$
- simulated distribution different from the predicted one (other predictions now available)
- weight defined as the ratio of the two distributions

A.Khodjamirian et al., JHEP 09 (2011) 106
$\mathcal{B}(B_{d,s}^0 \to \mu^+\mu^-)$: additional material

\[
\Gamma(B_S^0 \to \mu^+\mu^-) = (R_H + R_L)e^{-\Gamma_{st}}\left[\cosh\frac{y_st}{\tau_{B_S^0}} + A_{\Delta\Gamma}\sinh\frac{y_st}{\tau_{B_S^0}}\right]
\]

\[
y_s = (\Gamma_L - \Gamma_H)/(\Gamma_L + \Gamma_H) = 0.0615 \pm 0.0085 \text{ (from HFAG)}
\]

\[
A_{\Delta\Gamma} = (R_H - R_L)/(R_H + R_L) = 1.0 \text{ (from SM)}
\]

- Time dependent quantities used in the selection (e.g. impact parameters)
- Time integrated efficiency dependent on the decay rate

Y. Amhis et al., arXiv:1207.1158
K. De Bruyn et al., PRL 109 (2012) 041801
\[\mathcal{B}(B_{d,s}^0 \rightarrow \mu^+\mu^-) : \text{additional material} \]

Only muons in the barrel

<table>
<thead>
<tr>
<th>Phase-1</th>
<th>Phase-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass resolution (\approx 42 \text{ MeV})</td>
<td>Mass resolution: (\approx 28 \text{ MeV})</td>
</tr>
<tr>
<td>Uncertainties:</td>
<td>Uncertainties:</td>
</tr>
<tr>
<td>(B^+) : 5%</td>
<td>on (B^+) : 3%</td>
</tr>
<tr>
<td>on peaking bg: 20%</td>
<td>on peaking bg: 10%</td>
</tr>
<tr>
<td>on semileptonic bg: 25%</td>
<td>on semileptonic bg: 20%</td>
</tr>
<tr>
<td>on (f_s/f_u) : 5%</td>
<td>on (f_s/f_u) : 5%</td>
</tr>
<tr>
<td>Trigger & PU: same as (\sqrt{s} = 8 \text{ TeV})</td>
<td>Trigger & PU: reduced efficiency</td>
</tr>
<tr>
<td></td>
<td>35% signal and normalization</td>
</tr>
<tr>
<td></td>
<td>30% backgrounds</td>
</tr>
</tbody>
</table>
$\mathcal{B}(B^0_{d,s} \rightarrow \mu^+ \mu^-) :$ additional material
CMS parametrization

\[
\frac{1}{\Gamma} \frac{d^3\Gamma}{d \cos \theta_K d \cos \theta_L dq^2} = \frac{9}{16} \left\{ \left[\frac{2}{3} F_S + \frac{4}{3} A_S \cos \theta_K \right] (1 - \cos^2 \theta_L) + (1 - F_S) \left[2 F_L \cos^2 \theta_K (1 - \cos^2 \theta_L) + \frac{1}{2} (1 - F_L) (1 - \cos^2 \theta_K) (1 + \cos^2 \theta_L) + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_L \right] \right\}
\]

\(F_S, A_S \) constrained from \(B^0 \to K^{*0} J/\psi \) and \(B^0 \to K^{*0} \psi' \)

\[
\frac{d\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{dq^2} = \frac{\epsilon_N}{\epsilon_S} \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi)}{Y_N} \frac{dY_S}{dq^2}
\]

ATLAS parametrization

\[
\frac{1}{\Gamma} \frac{d^2\Gamma}{d \cos \theta_L dq^2} = \frac{3}{4} F_L (1 - \cos^2 \theta_L) + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_L) + A_{FB} \cos \theta_L
\]

\[
\frac{1}{\Gamma} \frac{d^2\Gamma}{d \cos \theta_K dq^2} = \frac{3}{2} F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K)
\]
$B^0 \rightarrow K^{*0} \mu^+\mu^-$, $K^{*0} \rightarrow K^+\pi^-$: additional material
Introduction

Rare decays

CP violation

Conclusions

Backup

Rare decays

CP violation

Conclusions

Backup

Additional Material

$B_s^0 \rightarrow J/\psi \phi$: additional material

<table>
<thead>
<tr>
<th>ATLAS ($\sqrt{s} = 7$ TeV)</th>
<th>CMS ($\sqrt{s} = 8$ TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>$</td>
<td>A_S</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
</tr>
<tr>
<td>$</td>
<td>A_\parallel</td>
</tr>
<tr>
<td>$\delta_\parallel [\text{rad}]$</td>
<td>[3.04, 3.23]</td>
</tr>
<tr>
<td>$\delta_\perp [\text{rad}]$</td>
<td>3.89 ± 0.47 ± 0.11</td>
</tr>
<tr>
<td>$\delta_S - \delta_\perp [\text{rad}]$</td>
<td></td>
</tr>
<tr>
<td>$\delta_\perp - \delta_s [\text{rad}]$</td>
<td>[3.02, 3.25]</td>
</tr>
<tr>
<td>τ</td>
<td>$[1/(0.677 \pm 0.007 \pm 0.004)]$ ps</td>
</tr>
</tbody>
</table>

Back to main frame 19
$B_s^0 \rightarrow J/\psi \phi$: additional material

$\sigma(pp \rightarrow J/\psi)$ at $\sqrt{s} = 14$ TeV assumed to be twice as at $\sqrt{s} = 7$ TeV