ntroduction	Rare decays	CP violation	Conclusions	Backup

Rare Decays and other Electroweak *b*-physics Measurements at ATLAS and CMS

P. Ronchese - CMS/ATLAS collaborations

University and INFN Padova

50th Rencontres de Moriond - EW 2015

La Thuile, Aosta valley, Italy Mars 14-21, 2015

Introduction ●○○	Rare decays	CP violation	Conclusions o	Backup
Outline				

- Introduction
- Rare decays:
 - $\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-)$ measurement
 - $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ angular analysis
- CP violation:
 - B^0_s lifetime difference and CPV phase in $B^0_s
 ightarrow J/\psi \phi$
 - $B_s^{ar 0} o J/\psi f_0$ propaedeutic studies
- Conclusions

Introduction oeo	Rare decays	CP violation	Conclusions o	Backup
Motivations				

Motivations to study HF physics at CMS & ATLAS

Look for indirect evidence or constraints to new physics beyond SM

- Tree level W exchange hardly modified by NP processes
- Exploit the sensitivity of some processes to loop diagrams at high mass scales
- Rare FCNC decays branching ratios modified by new degrees of freedom in the loops
- Angular analysis to probe specific terms in effective lagrangian
- Measure CP violation to investigate NP contributions to mixing processes

Rare decays

CP violation

Conclusions

Backup

ATLAS and CMS experiments

•
$$\sqrt{s} = 7 \text{ TeV}$$
, $\mathcal{L} \sim 5 \text{ fb}^{-1}$ (2011 run)
• $\sqrt{s} = 8 \text{ TeV}$, $\mathcal{L} \sim 20 \text{ fb}^{-1}$ (2012 run)

All shown results involve dimuons Dedicated triggers developed for analyses Selections: dimuon mass, p_T , displaced vertex, pointing angle

Introduction	Rare decays ●ooooooooo	CP violation	Conclusions o	Backup
Outline				

Introduction

Rare decays:

- $\mathcal{B}(B^0_{d,s}
 ightarrow \mu^+ \mu^-)$ measurement
- $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ angular analysis
- CP violation:
 - B^0_s lifetime difference and CPV phase in $B^0_s
 ightarrow J/\psi \phi$
 - $B_s^{ar 0}
 ightarrow J/\psi f_0$ propaedeutic studies
- Conclusions

BR determined by comparison with another channel

$$\mathcal{B}(B^{0}_{d,s} \to \mu^{+}\mu^{-}) = \frac{N_{\text{sig}}}{N_{\text{nrm}}} \frac{\epsilon_{\text{nrm}}}{\epsilon_{\text{sig}}} \frac{f_{u}}{f_{d,s}} \mathcal{B}(B^{\pm} \to J/\psi K^{\pm} \to \mu^{+}\mu^{-}K^{\pm})$$

• Combinatorial (from sidebands)

Background:

(*) Changed vs. previously published on PRL

- Non-peaking: semileptonic b-decays
- Peaking: $(B^0_{d,s}, \Lambda^0_b) \rightarrow hh'$ (from simulation) ATLAS($\sqrt{s} = 7 \text{ TeV}$) ATLAS-CONF-2013-076 $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-) < 1.5 \times 10^{-8}$ @ 95% C.L.

$$\begin{split} & \mathsf{CMS}(\sqrt{s}=7,8~\text{TeV})(^*) & \text{arXiv:1411.4413} \\ & \mathcal{B}(B^0_s \to \mu^+\mu^-) = (2.8^{+1.0}_{-0.9}) \times 10^{-9} \\ & \mathcal{B}(B^0_d \to \mu^+\mu^-) = (4.4^{+2.2}_{-1.9}) \times 10^{-10} \end{split}$$

More infos at frame 28

Intro 000	duction Ra	are decays ○○○●○○○○○	CP violation	Conclusions o	Backup
$\mathcal{B}($	$\mathcal{B}(B^0_{d,s} o \mu^+ \mu^-)$: updates & CMS+LHCb combination				
	Updated quan	tity	old	new	
	f_u/f_s		3.91 ± 0.31	3.86 ± 0.22	
	$\mathcal{B}(\Lambda_b^0 o p \mu^- u)$) (6.50	$0 \pm 6.50) imes 10^{-4}$	$(4.94\pm2.19) imes10^-$ event by event weights	-4 5

Time dependent corrections:

- Decay time dependent selection: time dependent efficiency
- Superposition of different mass eigenstates: time dependent width

CMS+LHCb
 arXiv:1411.4413

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$
 $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$

More infos at frames 28,29

P. Ronchese - CMS/ATLAS

EW measurements with b at ATLAS and CMS - 9

In O	troduction oo	Rare decays ooooo●oooo	CP violatio	on Conclusions	Backup		
Ŀ	${\cal B}(B^0_{d,s} ightarrow \mu^+\mu^-)$	-) : evolution					
	 Higher e (up to √ high Higher lu (up to L large high 	nergy $\overline{s} = 14$ TeV): er cross-section uminosity $= 5 \times 10^{34}$ cm ⁻ er events sample er pile-up (up to	⁻² s ⁻¹): 140)	 CMS evolution Improved muticity Improved tracticity Improved tracticity Improved trigger 	ution on system ed effect) kker r HL-LHC) ger		
	 Vertexing efficiency loss Tracking efficiency loss Background estimation improved 						
	CMS expe	ectations		2 nd	ECFA workshop		
	$\frac{\mathcal{L}(fb^{-1})}{300}$	$\frac{\delta \mathcal{B}/\mathcal{B}(B_s^0 \to \mu)}{13\%}$	$(\mu^+\mu^-) \mid \delta l$	$\frac{\mathcal{B}/\mathcal{B}(\overline{B^0_d} \to \mu^+ \mu^-)}{48\%}$	δ <i>R</i> 50%		

11%

3000

More infos at frame 30

21%

18%

Introduction	Rare decays ○○○○○●○○○	CP violation	Conclusions o	Backup
A				

Outline

Introduction

Rare decays:

- $\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-)$ measurement
- $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ angular analysis
- CP violation:
 - B^0_s lifetime difference and CPV phase in $B^0_s
 ightarrow J/\psi \phi$
 - $B_s^{ar 0} o J/\psi f_0$ propaedeutic studies
- Conclusions

P. Ronchese - CMS/ATLAS EW measurements with b at ATLAS and CMS - 13

18 q² (GeV²)

More infos at frames 32,33

m(Knuu) [MeV]

• $B^0 \to K^{*0} \mu^+ \mu^-$ decay parameters compatible with other experiments

- Parameters dependence on q² compatible with SM predictions at low and high q²
- Waiting for $\sqrt{s} = 8$ TeV results
- Looking for form-factor independent observables

More infos at frame 33

Introduction	Rare decays	CP violation ●0000000000	Conclusions o	Backup
Outline				

Introduction

• Rare decays:

- $\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-)$ measurement
- $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ angular analysis

OP violation:

- B^0_s lifetime difference and CPV phase in $B^0_s
 ightarrow J/\psi \phi$
- $B_s^0
 ightarrow J/\psi f_0$ propaedeutic studies

Conclusions

Introduction	Rare decays	CP violation	Conclusions o	Backup			
$B^0_{m s} o J/\psi \phi$: decay width parameters							
	Differ	ential decav width	า				

$$\frac{d^4 \Gamma(B_s^0(t))}{d \Theta dt} = f(\Theta, \alpha, ct) \propto \sum_{i=1}^{10} O_i(\alpha, ct) \cdot g_i(\Theta)$$

$$O_{i}(\alpha, ct) = N_{i}e^{-t/\tau} \left[a_{i}\cosh\left(\frac{1}{2}\Delta\Gamma_{s}ct\right) + b_{i}\sinh\left(\frac{1}{2}\Delta\Gamma_{s}ct\right) \\ \pm c_{i}\cos\left(\Delta m_{s}ct\right) \pm d_{i}\sin\left(\Delta m_{s}ct\right)\right]$$

 N_i, a_i, b_i, c_i, d_i terms depending on α parameters: • Φ_s in b_i , d_i

•
$$A_{\perp}$$
, A_0 , A_{\parallel} , A_S :
P-wave and *S*-wave amplitudes
• δ_{\perp} , δ_0 , δ_{\parallel} , δ_S : wave phases
• $|\lambda|$: direct CP violation
• $+(c_i, d_i)$ for B_s^0 ,
 $-(c_i, d_i)$ for \bar{B}_s^0 ,
 $B_s^0 - \bar{B}_s^0$ discrimination
• t^0

Other b flavour tagging

P. Ronchese - CMS/ATLAS

EW measurements with b at ATLAS and CMS - 18

Introductio	ו F כ	are decays	CP violation	Conclusions O O	Backup	
$B^0_s ightarrow$	$J/\psi\phi$: res	ults				
	Unbinned maximum likelihood fit including per-event resolution and tagging probability terms					
		ATLAS (\sqrt{s}	$\bar{s} = 7$ TeV)	CMS ($\sqrt{s} =$ 8 TeV)		
	ΔΓ _S [ps ⁻¹] ∮ _S [rad]	0.053 ± 0.02 0.12 ± 0.2	21 ± 0.010 25 ± 0.05	$\begin{array}{c} 0.096 \pm 0.014 \pm 0.007 \\ -0.03 \pm 0.11 \pm 0.03 \end{array}$		

Results compatible with world averages and SM expectations

More infos at frame 34

P. Ronchese - CMS/ATLAS EW measurements with b at ATLAS and CMS - 19

More infos at frame 35

Signal yield estimated from 2012 data by applying muon p_T cuts and rescaling for efficiencies and luminosities

ATLAS ex	pectations	ATL-PHYS-PUB-2013-010	1
$\mathcal{L}(fb^{-1})$	$p_{T\mu}$ cut [GeV]	$\sigma(\phi_s)$ (stat)[rad]	Expectations
100	6	0.054	validated with
100	11	0.10	2011 measurement
250	11	0.064	
3000	11	0.022	Mara infaa at frama 35

Introduction	Rare decays	CP violation	Conclusions o	Backup
Outline				

Introduction

• Rare decays:

- $\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-)$ measurement
- $B^0
 ightarrow K^{*0} \mu^+ \mu^-$ angular analysis

• CP violation:

- B^0_s lifetime difference and CPV phase in $B^0_s
 ightarrow J/\psi \phi$
- $B_s^0
 ightarrow J/\psi f_0$ propaedeutic studies

Conclusions

$$\begin{array}{c} \mathcal{N}e^{-\Gamma_{S}t} \left\{ e^{\Delta\Gamma_{s}t/2} (1 + \cos\phi_{s}) + e^{-\Delta\Gamma_{s}t/2} (1 - \cos\phi_{s}) \\ \pm \sin\phi_{s}\sin(\Delta m_{s}t) \right\} \end{array}$$

Hadronic structure of $f_0(980)$ B_s^0 flavour at production• quark-antiquarkTagged analysis• tetraquarkSame technique used as for
 $B_s^0 \rightarrow J/\psi\phi$ • Critical hadronic correctionsTagging info added to $\sin \phi_s$

EW measurements with b at ATLAS and CMS - 23

P. Ronchese - CMS/ATLAS

Introduction Rare decays	CP violation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Conclusions o	Backup		
$B^0_{m s} o J/\psi f_0$: BR measurement					
Propaedeutic studies					
 B(B⁰_s → J/ψf₀)B(f₀) has been measured lifetime and CPV measured 	$ ightarrow \pi^+\pi^-)/\mathcal{B}(B^0_s ightarrow M^+_s ightarrow B^+_s$ easurement $egin{array}{c} B_s\to\p_s\p_s\to\p_s\to\p_s\to\p_s\to\p_s\to\p_s\p_s\to\p_s\to\p_s\p_s\to\p_s\$	$J/\psi\phi){\cal B}(\phi o K^+K)$ R and lifetime: use probe hadronic stru	⁻) ful cture		

Event selection:

- J/ψ : dimuon originating from a displaced vertex
- *f*₀ : Two opposite-charge π |*m*_{ππ} - 974 MeV| < 50 MeV
- Φ : Two opposite-charge *K* $|m_{KK} - 1020 \text{ MeV}| < 10 \text{ MeV}$

$$egin{aligned} & R_{f_0/\phi} = rac{\mathcal{B}(B^0_{s}
ightarrow J/\psi f_0) \mathcal{B}(f_0
ightarrow \pi^+\pi^-)}{\mathcal{B}(B^0_{s}
ightarrow J/\psi \phi) \mathcal{B}(\phi
ightarrow K^+K^-)} = rac{m{N}^{f_0}_{ ext{obs}}}{m{N}^{\phi}_{ ext{obs}}} imes \epsilon^{\phi/f_0}_{ ext{reco}} \end{aligned}$$

- Yield from unbinned max likelihood fit
- Efficiency from MC

More infos at frame 27

P. Ronchese - CMS/ATLAS EW measurements with b at ATLAS and CMS - 25

- ATLAS and CMS have produced significant EW results in HF physics
- $\mathcal{B}(B^0_s
 ightarrow \mu^+ \mu^-)$ have been measured
- An angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$ have been performed
- The CP violation phase ϕ_s in $B_s^0 \to J/\psi \phi$ decay has been measured
- The study of the $B^0_s o J/\psi f_0$ decay begun

All results are, up to now, compatible with SM predictions ...but there's still room to squeeze it further

Introduction	Rare decays	CP violation	Conclusions o	Backup
Extra informat	ions			

BACKUP

P. Ronchese - CMS/ATLAS EW measurements with *b* at ATLAS and CMS - 27

Signal and background discriminated by mean of a multivariate analysis (BDT):

- ATLAS:
 - cut on BDT output

• CMS:

- events divided in 12 categories
- dimuon invariant mass fitted simultaneously in all categories

Background from $\Lambda_b^0 \rightarrow p \mu^- \nu$ (CMS):

- mis-reconstruction probability strongly dependent on $q^2=m_{\mu
 u}^2$
- simulated distribution different from the predicted one (other predictions now available)
 A.Khodjamirian *et al.*, JHEP 09 (2011) 106
- weight defined as the ratio of the two distributions

Back to main frames 8,9

Introduction Rare decays CP violation Conclusions Backup
$$(R^0 \times u^+ u^-)$$
 : additional material

$$\Gamma(B^0_s o \mu^+ \mu^-) = (R_H + R_L) e^{-\Gamma_s t} \left[\cosh rac{y_s t}{ au_{B^0_s}} + \mathcal{A}_{\Delta\Gamma} \sinh rac{y_s t}{ au_{B^0_s}}
ight]$$

 $y_{s}=(\Gamma_{L}-\Gamma_{H})/(\Gamma_{L}+\Gamma_{H})=0.0615\pm0.0085$ (from HFAG)

Y.Amhis et al., arXiv:1207.1158

$$\mathcal{A}_{\Delta\Gamma}=(\mathcal{R}_{H}-\mathcal{R}_{L})/(\mathcal{R}_{H}+\mathcal{R}_{L})=$$
 1.0 (from SM)

K. De Bruyn et al., PRL 109 (2012) 041801

 Time dependent quantities used in the selection (e.g. impact parameters)

Ud.s

Time integrated efficiency dependent on the decay rate

30% backgrounds

CP violation

Conclusions

Backup

$\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-)$: additional material

Introduction Rare decays CP violation Conclusions Backup $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $K^{*0} \rightarrow K^+ \pi^-$ additional material CMS parametrization $\frac{1}{\Gamma}\frac{d^{3}\Gamma}{d\cos\theta_{\kappa}d\cos\theta_{l}\,dq^{2}}=\frac{9}{16}\left\{\left[\frac{2}{3}F_{S}+\frac{4}{3}A_{S}\cos\theta_{K}\right]\left(1-\cos^{2}\theta_{L}\right)\right\}$ $+(1-F_S)\left[2F_I\cos^2\theta_K(1-\cos^2\theta_I)\right]$ $+\frac{1}{2}(1-F_{I})(1-\cos^{2}\theta_{K})(1+\cos^{2}\theta_{I})$ $+\frac{4}{2}A_{FB}(1-\cos^2\theta_K)\cos\theta_I$ F_S , A_S constrained from $B^0 \to K^{*0} J/\psi$ and $B^0 \to K^{*0} \psi'$ $\frac{d\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{dq^2} = \frac{\epsilon_N}{\epsilon_S} \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi)}{Y_N} \frac{dY_S}{dq^2}$

ATLAS parametrization

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_L dq^2} = \frac{3}{4} F_L (1 - \cos^2 \theta_L) \\
+ \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_L) + A_{FB} \cos \theta_L \\
\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_K dq^2} = \frac{3}{2} F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K)$$

Back to main frames 12,13

$B^0 ightarrow K^{*0} \mu^+ \mu^-$, $K^{*0} ightarrow K^+ \pi^-$: additional material

Introduction	Rare decays	CP violation	Conclusions o	Backup
$B^0_s ightarrow J/\psi \phi$: ac	ditional materia	ıl		

	ATLAS ($\sqrt{s} = 7$ TeV)	CMS (\sqrt{s} = 8 TeV)
$ A_0 ^2$	$0.529 \pm 0.006 \pm 0.012$	$0.511 \pm 0.006 \pm 0.012$
$ A_{S} ^{2}$	$0.024 \pm 0.014 \pm 0.028$	$0.015 \pm 0.016 \pm 0.022$
$ A_{\perp} ^2$		$0.242 \pm 0.008 \pm 0.012$
$ A_{\parallel} ^2$	$0.220 \pm 0.008 \pm 0.009$	
δ_{\parallel} [rad]	[3.04, 3.23]	$3.48 \pm 0.09 \pm 0.68$
δ_{\perp} [rad]	$3.89 \pm 0.47 \pm 0.11$	$2.73 \pm 0.36 \pm 0.66$
$\delta_{\mathcal{S}} - \delta_{\perp}$ [rad]		$0.34 \pm 0.24 \pm 1.12$
$\delta_{\perp} - \delta_s[rad]$	[3.02, 3.25]	
au [1/	$(0.677\pm0.007\pm0.004)]$ ps	$[$ 447.3 \pm 3.0 \pm 3.5 $]$ μ m $/c$

$$\sigma(pp
ightarrow J/\psi)$$
 at $\sqrt{s} =$ 14 TeV assumed to be twice as at $\sqrt{s} =$ 7 TeV

Back to main frames 20,21