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Why studying solar 
neutrinos?
•The standard Solar Model 
predicts the neutrino fluxes and 
their spectrum;

•Studying solar neutrinos is 
interesting both for 
ASTROPHYSICS (comparison 
with predictions of the SSM) and 
for PARTICLE PHYSICS 
(neutrinos oscillations); 
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•Studying solar neutrinos is 
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with predictions of the SSM) and 
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ASTROPHYSICS

Open Issues: solar metallicity
•Metallicity is input in the Standard Solar Model;

•Differences as large as 30-40% (for CNO);

•Differences of ~9% for 7Be ν

•Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639
•High metallicity GS98 = Grevesse et al.S. Sci. Rev. 85,161 (‘98);
•Low metallicity AGS09 = Asplund, et al, A.R.A.&A.  47(2009)481;
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interesting both for 
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with predictions of the SSM) and 
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PARTICLE PHYSICS
The “solar neutrino problem” has provided one of 
the first hints towards neutrino oscillations; 

•Now we know that solar neutrinos oscillate:

“LMA solution”: ∆m2 =7.6×10-5 eV2; tg2θ =  0.468

Open issues: probe Pee in the vacuum to matter 
transition region 
• sensitive to new physics;
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Why studying pp neutrinos?
• pp neutrinos provide a direct glimpse into 

the main fusion process that keeps the 
Sun shining;

• in fact, pp neutrinos are produced in the 
primary nuclear reaction of the  pp-cycle;

• A large fraction(~90%) of the solar 
luminosity in neutrinos is due to pp 
neutrinos
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Why studying pp neutrinos?
• pp neutrinos provide a direct glimpse into 

the main fusion process that keeps the 
Sun shining;

• in fact, pp neutrinos are produced in the 
primary nuclear reaction of the  pp-cycle;

• A large fraction(~90%) of the solar 
luminosity in neutrinos is due to pp 
neutrinos

DIFFICULT TO DETECT

• pp neutrinos have low energy 
they are difficult to detect;

•GALLEX and SAGE have performed 
an integrated measurement of the 
low energy solar neutrino flux (E>233 
keV);

•Only real-time detectors can single-
out different components of solar 
neutrino spectrum;

•pp neutrinos never observed in 
real time befor Borexino!
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Why studying pp neutrinos?
• pp neutrinos provide a direct glimpse into 

the main fusion process that keeps the 
Sun shining;

• in fact, pp neutrinos are produced in the 
primary nuclear reaction of the  pp-cycle;

• A large fraction(~90%) of the solar 
luminosity in neutrinos is due to pp 
neutrinos

SOLAR (IN)VARIABILITY

•pp neutrinos are “instant messangers” 
from the center of the Sun;

•neutrinos take only few seconds to 
travel from the center of the Sun to the 
surface (and then 8 minutes to reach 
Earth);

•photons take over ~105 years;

•Verifying that the solar luminosity in 
neutrinos is the same as the one in 
photons demonstrate the stability of 
the Sun on the 105 years time scale;

Los Alamos Science 3 (2) (1982) 46



Barbara Caccianiga-INFN Milano 50th Rencontres de Moriond- La Thuile, March 14th 21st 2015

How can we study neutrinos from the  Sun?
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Borexino is located under the Gran Sasso mountain in Italy



Borexino

Barbara Caccianiga-INFN Milano 50th Rencontres de Moriond- La Thuile  March 14th 21st 2015
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scintillator contained in  a nylon vessel 
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Core of the detector: 300 tons of liquid 
scintillator contained in  a nylon vessel 
of 4.25 m radius (PC+PPO);

1st shield: 1000 tons of ultra-pure buffer 
liquid (pure PC) contained in a stainless 
steel sphere of 7 m radius;

2nd shield: 2000 tons of ultra-pure water 
contained in a cylindrical dome;

2214 photomultiplier tubes pointing 
towards the center to view the light 
emitted by the scintillator;

Borexino is located under the Gran Sasso mountain in Italy



•Main goal: detecting low energies solar neutrinos, in particular 7Be neutrinos;
•Detection principle: scattering of neutrinos on electrons νx + e-  νx + e-

•Detection technique: large mass of organic liquid scintillator;
•Technique advantages: high light-yield (higher than Cerenkov)
•Technique disadvantages: no directional information (unlike Cerenkov);
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• The expected rate of solar neutrinos in 100tons of BX scintillator
is   ~50 counts/day which corresponds to ~ 5 10-9 Bq/Kg;

• Just for comparison:
• Natural water is ~ 10 Bq/Kg in 238U, 232Th and 40K
• Air                  is ~ 10 Bq/m3 in 39Ar, 85Kr and 222Rn
• Typical rock   is ~ 100-1000 Bq/m3 in 238U, 232Th and 40K
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•Main goal: detecting low energies solar neutrinos, in particular 7Be neutrinos;
•Detection principle: scattering of neutrinos on electrons νx + e-  νx + e-

•Detection technique: large mass of organic liquid scintillator;
•Technique advantages: high light-yield (higher than Cerenkov)
•Technique disadvantages: no directional information (unlike Cerenkov);

• The expected rate of solar neutrinos in 100tons of BX scintillator
is   ~50 counts/day which corresponds to ~ 5 10-9 Bq/Kg;

• Just for comparison:
• Natural water is ~ 10 Bq/Kg in 238U, 232Th and 40K
• Air                  is ~ 10 Bq/m3 in 39Ar, 85Kr and 222Rn
• Typical rock   is ~ 100-1000 Bq/m3 in 238U, 232Th and 40K

BX scintillator must be 9/10 order of magnitude less radioactive than 
anything on earth!
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Background suppression: 15 years of work

• Internal background: contamination of the scintillator itself 
(238U, 232Th, 40K, 39Ar, 85Kr, 222Rn)
– Solvent purification (pseudocumene): distillation, vacuum stripping with low 

Argon/Kripton N2 (LAKN);
– Fluor purification (PPO): water extraction, filtration, distillation,N2 stripping 

with LAKN;
– Leak requirements for all systems and plants < 10-8 mbar· liter/sec;

• External background: γ and neutrons  from surrounding materials 
– Detector design: concentric shells to shield the inner scintillator;
– Material selection and surface treatement;
– Clean construction and handling;
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• External background: γ and neutrons  from surrounding materials 
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Background suppression: achievements

•Contamination from 238U and 232Th chain are found to be in the range of   ~10-17

g/g and ~5x×10-18 g/g respectively;

•More than one order of magnitude better than specifications!

•Three backgrounds out of specifications: 210Po, 210Bi and 85Kr.
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PHASE 1 (2007-2010)
Solar neutrinos
• 7Be ν : 1st observation+ 
precise measurement (5%); √
• Day/Night asymmetry; √
•pep ν: 1st observation; √
• 8B ν; √
•CNO n: best limit √
Geo-neutrinos
•Evidence > 4.5σ √

•Limit on rare processes √
•Study on cosmogenics √
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PHASE 2 (2012-2015)
Improved radiopurity 
• 85Kr rate compatible with 0
• 210Bi reduced by a factor ~3;
• 232Th and 238U  negligible;
pp neutrinos
“Neutrinos from the primary 

proton-proton fusion process in 
the Sun” Nature, 512 383-386 
(2014)

More to come!
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Residual 
backgrounds

•14C

•14C pile-up

•85Kr

•210Bi

•210Po

Spectral fit to 
disentangle 
contributions
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7Be ν with 5% error
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Absence of Day/Night asymmetry 
Phys.Lett.B 707, 22-26 (2012)
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Borexino Phase 2: new challenges

-----Borexino Phase I (May 2007-May 2010)
-----Borexino Phase II (Jan 2012-Mar 2012)

Comparison between Phase 1 and Phase 2 data

• We are now able of exploring the low energy region where pp neutrinos are;

npmts

14C, unavoidable in 
organic scintillator 
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Expected spectrum

14C

• pp solar neutrinos induce  electron-recoils up to ~300 keV ;
• This region is vastly dominated by 14C (Signal/Background ~ 10 -5 !);
• Below ~150 keV (~60 npmts) 14C is overwhelming;
• Pile-up of 14C events (2 events within the same acquisition window mainly 

14C+14C but also other) is also a significant background in the sensitivity 
window for pp ν ;

Search for pp-neutrinos: challenges

A spectral fit is needed 
to disentangle the 
contributions of signal 
and background;

It is crucial to know 
precisely the spectral 
shapes of signal and 
backgrounds;



Spectral shapes are affected by the detector response:
• Spectral deformation  (both signal and backgrounds) due to several 

effects (threshold, dark noise);
• Energy scale and resolution issues at low energies (quenching..);
Detector response at low energy assessed by combining calibration 
data and MonteCarlo simulations;
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Spectral shapes are affected by the detector response:
• Spectral deformation  (both signal and backgrounds) due to several 

effects (threshold, dark noise);
• Energy scale and resolution issues at low energies (quenching..);
Detector response at low energy assessed by combining calibration 
data and MonteCarlo simulations;

Independent determination of the rate of the main backgrounds (14C 
and pile-up) in order to constrain them in the fit;
• 14C rate determined from an independent class of events less affected 

by the trigger threshold (2° cluster events);
• Pile-up rate and shape determined by a data-driven method (synthetic 

pile-up);

Search for pp-neutrinos: challenges
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Independent determination of the 
14C rate: 2-nd cluster events
• Events occurring in the last part of 

the acquisition window (triggered by 
the previous event);

• Spectral shape is less affected by 
the trigger threshold;

• Fit to extract the rate;
• 14C rate = (40 ± 1)Bq/100tons



Search for pp-neutrinos  : 14C and pile-up
Independent determination of the 
14C rate: 2-nd cluster events
• Events occurring in the last part of 

the acquisition window (triggered by 
the previous event);

• Spectral shape is less affected by 
the trigger threshold;

• Fit to extract the rate;
• 14C rate = (40 ± 1)Bq/100tons

Independent determination of 
the pile-up shape and rate:
synthetic pile-up 
• Data-driven method;
• To construct pile-up, real-events 

are artificially overlapped with 
random data samples;

Pile-up rate(14C -14C)=
(154 ±10) cpd/100tons;
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Fit range:165-590 keV

Search for pp-neutrinos: results

pp-ν rate= 144 ±13(stat) ±10 (sys) cpd/100tons

Evaluation of systematics

• Distribution of the best fit values 
for pp-rate obtained varying 
some of the fit conditions (fit 
range, energy estimator...)

Predicted rate for SSM (High Metallicity) + MSW-LMA = 131 ± 2 cpd/100tons
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Borexino results only!
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• calibration campaign to further reduce systematic uncertainties;
• improved measurement of 7Be ν (3% error? challenging!) and other 
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• Attempt to measure CNO ν: very challenging!
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• In 2016 the 144Ce-144Pr anti-neutrino source will arrive in Gran 
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Thank you!
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