Neutrinos from heaven and hell in IceCube
Latest results on astrophysical neutrinos and neutrino oscillations

Juan Pablo Yáñez
for the IceCube Collaboration
DESY

Moriond 2015
March 2015, La Thuile
Neutrinos from Hell
TeV - PeV

Image credit: Aurore Simonnet, Sonoma State University
The promise of HE neutrinos

A hundred year puzzle: the cosmic ray spectrum

Where do these particles come from?

Cosmic accelerators? Exotic scenarios?

ν's most likely involved → E ~ [TeV, PeV]

\[p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \]

when found ...

http://www.physics.utah.edu/~whanlon/spectrum.html
http://starfishquay.blogspot.de/2013/11/the-era-of-neutrino-astronomy-has-begun.html
IceCube
An instrument for neutrino astronomy

- Ice Cherenkov neutrino detector
- 5,160 DOMs
- 86 strings
- 1 km³ volume
- 1.5 – 2.5 km under ice
- Spacing: 17 m in z, 125 in x-y
IceCube
An instrument for neutrino astronomy

*Not to scale

Atmosphere

Source of cosmic rays

Astrophysical neutrino

Cosmic ray

Image: http://globe-views.com/dreams/earth.html
IceCube
An instrument for neutrino astronomy

*Not to scale

Image: http://globe-views.com/dreams/earth.html
IceCube
An instrument for neutrino astronomy
where the signal is hidden in a very large background

» Searches use
 » Direction, energy, time
 » Event topology
 » Diffuse, point-source approaches

*Not to scale

Image: http://globe-views.com/dreams/earth.html
Diffuse, starting events

» Exploit different E spectra → focus on high energies

» Use the detector for vetoing → starting events

Fluxes of detectable down-going μ & ν

Example of different fiducial volumes used
Diffuse, starting events
Diffuse, starting events

decline: -0.4°
 deposited energy: 71TeV

decline: 40.3°
 deposited energy: 253TeV
Diffuse, starting events

» HE search w/ 3 years of data
» 37 neutrino candidates, mostly cascades, 5.7σ over background
» Search extended to lower energies (2 years)
» 283 cascades + 105 tracks, large overlap with HE analysis

Phys. Rev. D 91, 022001
Diffuse, through-going muons

- Earth-crossing muons → must come from neutrinos
- Good angular resolution, lower limit in energy

View of four HE neutrino-induced muons
Joint analysis of diffuse searches

- Including all diffuse searches in IceCube (also from incomplete detector)
- Best fit by an unbroken power law spectrum
 - Flux Φ (at 100 TeV) = $(6.7^{+1.1/-1.2}) \cdot 10^{-18}$ (GeV s sr cm$^{-2}$)$^{-1}$
 - Spectral index $\gamma = -2.50 \pm 0.09$

Fit flavor ratio at Earth is 1:1:0 (ν_e:ν_μ:ν_τ) compatible with expected 1:1:1
What are the sources of HE ν's?

» No significant clustering of events in HE sample

» Cascades seem to cluster → but they have poor resolution

» Only few tracks, not clustering
Origin of diffuse HE neutrino flux

» Searches for point-like sources compatible with background

 » Full sky
 » Catalogue-based
 » Stacking of sources
 » Transients

» Limits on Fermi Blazars contribution to the diffuse flux
 » GRBs largely excluded
 Nature 484 (2012), 351-354

... we need more data

\[\frac{E^2 d\Phi}{dE_{\nu}} \quad \text{[GeV}^2\text{s}^{-1}\text{cm}^{-2}\text{sr}^{-1}] \]

- Limit
- Diffuse Flux **

\[\text{Neutrino Energy [GeV]} \]

- equal weighting *
- \(\gamma\)-Lumi. weighting

IceCube Preliminary

17%
8%

\(\text{IceCube Preliminary} \quad \text{arXiv:1502.03104} \)

*) Band denotes central 90 % of outcomes of different realizations from the \(\gamma\)-Luminosity Function. This limit also holds for all (quasi-)isotropic subpopulations, independent of their gamma emission.

**) 1-flavor diffuse fit result [arxiv:1410.1749]
Neutrinos from Heaven
10 - 100 GeV
Atmospheric neutrino oscillations

Neutrinos change flavor as they travel

\[P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E) \]

Atmospheric neutrinos below 100 GeV

Suitable probe for the “large” mass splitting \(|\Delta m^2_{32}| \approx |\Delta m^2_{31}| \)
IceCube + DeepCore
An instrument for neutrino physics

- 8 + 7 strings (DC + IC)
- 0.02 km3 volume
- ~ 500 DOMs in fid. vol.
- 2-2.5 km deep, clearest ice
- Spacing: 7m in z, 40-70m in x-y
- Neutrino energy threshold ~ 10 GeV

Typical LE neutrino in DC
- 7 DOMs with signal hits
- $E_{\nu} = 12$ GeV
- 8 GeV muon (42 m)
- 4 GeV hadronic shower
IceCube + DeepCore
An instrument for neutrino physics

where the signal is buried under enormous background

Source of cosmic rays

Cosmic ray

Astrophysical neutrino

Atmospheric neutrino

Muons

*Not to scale

Image: http://globe-views.com/dreams/earth.html
IceCube + DeepCore
An instrument for neutrino physics
where the signal is buried under enormous background

*Not to scale

Image: http://globe-views.com/dreams/earth.html

» Use IC as veto
» Reconstruct neutrino L & E
» Compare with unoscillated flux
Measurement strategy

- Focus on ν_μ CC “golden” events
- Starting events → IceCube as veto for DeepCore
- Clear muon tracks
- Core of direct photons
Measurement strategy

» Focus on ν_μ CC “golden” events

» Starting events → IceCube as veto for DeepCore

» Clear muon tracks

» Core of direct photons

Zenith angle distribution of events at different selection levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Data</th>
<th>Neutrino simulation</th>
<th>Atm. muons (from data)</th>
<th>Neutrinos + Atm. muons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\cos(\theta_{\text{reco}})$
Measurement strategy

» Focus on ν_μ CC “golden” events

» Starting events \rightarrow IceCube as veto for DeepCore

» Clear muon tracks

» Core of direct photons
 » Minimize ice properties impact
 » $\sim 30\%$ signal efficiency

» “Easy” to reconstruct
 » 10° res. in zenith angle
 » From time of arrival
 » 25% res. in neutrino energy
 » From observing charge/no charge
Measurement strategy

» Focus on ν_μ CC “golden” events

» Starting events \rightarrow IceCube as veto for DeepCore

» Clear muon tracks

» Core of direct photons
 » Minimize ice properties impact
 » $\sim 30\%$ signal efficiency

» “Easy” to reconstruct
 » 10° res. in zenith angle
 » From time of arrival
 » 25% res. in neutrino energy
 » From observing charge/no charge
Agreement between data and MC

» Best fit to the data from a 2D analysis (E, θ)
» Up-going events
» Using E < 56 GeV
» 5174 events in 3 years
» In 2D fit histogram
 » $x^2 = 54.9 / 56$ d.o.f.

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc
Best fit oscillation parameters

\[|\Delta m_{32}^2| = 2.72^{+0.19}_{-0.20} \times 10^{-3} \text{ eV}^2 \]

\[\sin^2(\theta_{23}) = 0.53^{+0.09}_{-0.12} \]

» First time a very large volume neutrino detector fits in this figure

» Measuring large L/E range

» Affected by different syst.

» Stat. only errors

\[|\Delta m_{32}^2| = +0.14 \times 10^{-3} \text{ eV}^2 \]

\[\sin^2(\theta_{23}) = +0.06 \]

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

... we need more, and better, data
After visiting hell and heaven

Back to Earth
IceCube is on its way to ...

- Neutrino astronomy
 - A diffuse flux has been observed
 - With high significance
 - In track and cascade channels
 - No point source identified until now
 - Too dim / frequent?

- Competitive particle physics results
 - Neutrino oscillations measured
 - Systematic uncertainties kept under control
 - Improving selection, reconstruction
 - Starting to look at other “channels”
 - Matter effects not significant until now

On our way, not there yet
A possible future

If it worked once, do it again
A possible future

Next generation neutrino experiments at the South Pole

IceCube Gen2 – larger spacing, bigger volume, surface veto → point sources
PINGU – denser DeepCore, matter effects in oscillations → neutrino mass hierarchy
Backup slides
FAQ from heaven

- Neutrino:antineutrino ratio = 2:1
- Tracks + cascades → next step
- Final muon contamination of the sample of 1%
- Fit of systematic uncertainties as nuisance parameters
 - Very small deviations from nominal value
- No sensitivity to mass ordering
- Study of electron-neutrino component underway
Measuring neutrino oscillations

» Common to all oscillation experiments
 » Compare neutrino flux at production/detection, explain discrepancies with oscillations
 » Relevant differences between IceCube DeepCore and other oscillation experiments

<table>
<thead>
<tr>
<th>IceCube DeepCore</th>
<th>Atmospheric (Super-Kamiokande)</th>
<th>Accelerator (MINOS, NovA, T2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial flux obtained from models (tuned with measurements)</td>
<td>Detection by Cherenkov rings</td>
<td>Near detectors → initial flux well understood</td>
</tr>
<tr>
<td>Large range in L (baseline) of 10-12,700 km</td>
<td>~ 22.5 - 40 kton detector</td>
<td>Tracking detectors</td>
</tr>
<tr>
<td>Complex natural medium</td>
<td>Dimensions: < 10m diameter x ~30 m length</td>
<td>Committed to single baseline</td>
</tr>
<tr>
<td>Open detector, order of Mton</td>
<td>Narrow energy range</td>
<td></td>
</tr>
<tr>
<td>Large range in energy, higher than any other experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection by Cherenkov light produced over ten's of meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited particle ID: muon, non-muon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactions mainly deep inelastic scattering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy resolution ~ 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Densely instrumented detectors, good measurement of hadrons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complicated neutrino interactions in “transition region” (< a few GeV)</td>
</tr>
</tbody>
</table>

Some of the main differences between experiments measuring the atmospheric parameters of oscillations. T2K is complicated to place, as Super-Kamiokande acts as far detector.
Systematic uncertainties used

<table>
<thead>
<tr>
<th>Source of error</th>
<th>Nominal value from</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cross-section scaling</td>
<td></td>
<td>Free E^(+/-0.03)</td>
</tr>
<tr>
<td>Linear energy dependence</td>
<td></td>
<td>~ +/-20%*</td>
</tr>
<tr>
<td>Axial mass of non-DIS events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric neutrino flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall normalization</td>
<td>Honda 2012</td>
<td>Free E^(+/-0.04)</td>
</tr>
<tr>
<td>Spectral index</td>
<td></td>
<td>+/- 20%</td>
</tr>
<tr>
<td>NuE relative normalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadronic energy scaling</td>
<td>Geant4 (model)</td>
<td>+/- 5%</td>
</tr>
<tr>
<td>DOM overall efficiency</td>
<td>Muons, flashers</td>
<td>+/- 10%</td>
</tr>
<tr>
<td>DOM angular acceptance (scattering in hole-ice)</td>
<td>Fit to flasher data</td>
<td>As large as 50%‡</td>
</tr>
<tr>
<td>Bulk-ice model</td>
<td></td>
<td>Two models</td>
</tr>
</tbody>
</table>

* Exact value depends on the individual process

‡ Largest deviation for photons perpendicular to PMT direction
Agreement between data and MC

» Full 2D histogram
neutrino oscillations
Evolution of oscillation analysis in IceCube DeepCore

MINOS 2012
Super-K 2012, zenith 2ν
T2K 2013, $\theta_{23} \geq \pi/4$
ANTARES
IceCube-79, χ^2, zenith
IceCube-79, likelihood, zenith and energy, preliminary
IceCube-86, likelihood, zenith and energy, preliminary

*Normalization has been fixed at the horizon

IceCube Preliminary

Ratio X:\delta Oscillations

Events

IC2012

IC2014
Electron neutrinos from the atm

Consistent with Honda flux

Extrapolated to higher energies using H3a model

M. G. Aartsen et al. Phys. Rev. D 89, 062007
FAQ from Hell

» Galactic or extra-galactic?
 » No hints yet

» Northern vs southern sky?
 » Looks different, but not significant

» Going from tracks and cascades → flavor
 » Cascades ≈ NuE + NuTau + 0.4*NuMu
 » Tracks ≈ 0.6*NuMu

» “Prompt component” still uncertain
 » Not a major uncertainty in the astrophysical flux (veto)
Diffuse, HE starting events

- Using 3 years of data, HE starting events
- 37 neutrino candidates
 - 8 ± 4 atm. muons
 - 6 $^{+6}_{-2}$ atm. neutrinos
- 5.7 σ over background
- Cascade-dominated
 - Poor angular resolution
- Search extended to LE

[Graph: IceCube Preliminary, Events per 988 Days vs Deposited EM-Equivalent Energy in Detector (TeV)]

Phys. Rev. Lett. 113, 101101
Joint analysis of diffuse searches

»Likelihood scans

Normalization vs spectral index

Normalization, index vs charm component
Joint analysis of diffuse searches

» Different samples used in the joint LLH analysis
Joint analysis of diffuse searches

Individual fits to different samples
Joint analysis of diffuse searches

» Flavor ratio

IceCube Preliminary

$\nu_e : \nu_\mu : \nu_\tau$ at source

0:1:0 1:2:0 1:0:0

ν_e fraction at Earth

68% C.L.
90% C.L.
Joint analysis of diffuse searches

Flavor ratio (compared to previous result in arXiv)

IceCube Preliminary

\[\nu_e : \nu_\mu : \nu_\tau \text{ at source} \]

- 0:1:0
- 1:2:0
- 1:0:0

\[\Delta \ln L \]