Neutrinos from heaven and hell in IceCube Latest results on astrophysical neutrinos and neutrino oscillations

Juan Pablo Yáñez‡ for the **IceCube Collaboration DESY**

Moriond 2015 March 2015, La Thuile

*juan.pablo.yanez@desy.de

Neutrinos from Hell TeV - PeV

Concession of the second

The promise of HE neutrinos

»A hundred year puzzle: the cosmic ray spectrum

»Where do these particles come from?

» Cosmic accelerators? Exotic scenarios?

» v's most likely involved → E ~ [TeV, PeV]

 $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+$

when found ...

http://starfishquay.blogspot.de/2013/11/the-era-of-neutrino-astronomy-has-begun.html

where the signal is hidden in a <u>very large background</u>

»Exploit different E spectra → focus on high energies

»Use the detector for vetoing \rightarrow starting events

declination: -0.4° deposited energy: 71TeV

declination: 40.3° deposited energy: 253TeV

»HE search w/3 years of data Phys. Rev. Lett. 113, 101101 (2014)
» 37 neutrino candidates, mostly cascades, 5.7σ over background

»Search extended to lower energies (2 years)

Phys. Rev. D 91, 022001

» 283 cascades + 105 tracks, large overlap with HE analysis

Diffuse, through-going muons

»Earth-crossing muons → must come from neutrinos »Good angular resolution, lower limit in energy

» Including all diffuse searches in IceCube (also from incomplete detector)

» Best fit by an unbroken power law spectrum

» Flux Φ (at 100 TeV) = (6.7 +1.1/-1.2) · 10⁻¹⁸ (GeV s sr cm²)⁻¹

 \gg Spectral index γ = -2.50 \pm 0.09

Fit flavor ratio at Earth is 1:1:0 ($v_e:v_\mu:v_\tau$) compatible with expected 1:1:1

What are the sources of HE v's?

» No significant clustering of events in HE sample

- » Cascades seem to cluster \rightarrow but they have poor resolution
- » Only few tracks, not clustering

Origin of diffuse HE neutrino flux

»Searches for point-like sources compatible with background

- » Full sky
- » Catalogue-based
- » Stacking of sources
- » Transients

 10^{-6} $E^2 \frac{\mathrm{d}\Phi}{\mathrm{d}E}_{\nu_{\mu}} \, [\mathrm{GeVs^{-1}cm^{-2}sr^{-1}}]$ equal weighting * arXiv:1502.03104 10^{-7} γ -Lum. weighting 10^{-8} 17% 10^{-9} 8% » Limits on Fermi IceCube Preliminary 10^{-10} $10^{\overline{2}}$ $10^{\overline{5}}$ 10^{8} 10^{3} 10^{9} 10^{6} 10^{4} 10^{7} Blazars contribution to Neutrino Energy |GeV the diffuse flux *) Band denotes central 90 % of outcomes of different realizations from the γ -Luminosity Function. » GRBs largely excluded This limit also holds for all (quasi-)isotropic subpopulations, independent of their gamma emission. Nature 484 (2012), 351-354 **) 1-flavor diffuse fit result [arxiv:1410.1749]

Limit

... we need more data

Diffuse Flux

Neutrinos from Heaven 10 - 100 GeV

Atmospheric neutrino oscillations

»Neutrinos change flavor as they travel

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)$$

» Atmospheric neutrinos below 100 GeV

» Suitable probe for the "large" mass splitting $|\Delta m_{32}^2| \simeq |\Delta m_{31}^2|$

IceCube + DeepCore An instrument for neutrino physics

» 8 + 7 strings (DC + IC) » 0.02 km3 volume
» ~ 500 DOMs in fid. vol. » 2-2.5 km deep, clearest ice
» Spacing: 7m in z, 40-70m in x-y
» Neutrino energy threshold ~ 10 GeV

IceCube + DeepCore An instrument for neutrino physics

IceCube + DeepCore An instrument for neutrino physics

»Focus on ν_{μ} CC "golden" events

»Starting events \rightarrow IceCube as veto for DeepCore

»Clear muon tracks

»Core of *direct* photons

»Focus on ν_{μ} CC "golden" events

»Starting events \rightarrow IceCube as veto for DeepCore

»Clear muon tracks

»Core of *direct* photons

»Focus on ν_{μ} CC "golden" events

- »Starting events \rightarrow IceCube as veto for DeepCore
- »Clear muon tracks

»Core of *direct* photons

- » Minimize ice properties impact
- » ~ 30% signal efficiency

»"Easy" to reconstruct

- » 10° res. in zenith angle
 » From time of arrival
- » 25% res. in neutrino energy
 - » From observing charge/no charge

»Focus on ν_{μ} CC "golden" events

- »Starting events \rightarrow IceCube as veto for DeepCore
- »Clear muon tracks
- »Core of *direct* photons
 - » Minimize ice properties impact
 - » ~ 30% signal efficiency

»"Easy" to reconstruct

- » 10° res. in zenith angle
 » From time of arrival
- » 25% res. in neutrino energy
 - » From observing charge/no charge

Agreement between data and MC

»Best fit to the data from a 2D analysis (E, θ) »Up-going events »Using E < 56 GeV »5174 events in 3 years »In 2D fit histogram » x² = 54.9 / 56 d.o.f.

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

Best fit oscillation parameters

Data of this analysis available at http://icecube.wisc.edu/science/data/nu_osc

 \dots we need more, and better, data $_{2}$

After visiting hell and heaven Back to Earth

IceCube is on its way to ...

»Neutrino astronomy

- »A diffuse flux has been observed
 - » With high significance
 - » In track and cascade channels
- »No point source identified until now » Too dim / frequent?

»Competitive particle physics results

- »Neutrino oscillations measured
 - » Systematic uncertainties kept under control
 - » Improving selection, reconstruction
 - » Starting to look at other "channels"
- »Matter effects not significant until now

<u>On our way, not there yet</u>

A possible future

If it worked once, do it again

A possible future

» Next generation neutrino experiments at the South Pole

- » IceCube Gen2 larger spacing, bigger volume, surface veto \rightarrow point sources
- » PINGU denser DeepCore, matter effects in oscillations \rightarrow neutrino mass hierarchy

Backup slides

FAQ from heaven

- » Neutrino:antineutrino ratio = 2:1
- » Tracks + cascades \rightarrow next step
- » Final muon contamination of the sample of 1%
- » Fit of systematic uncertainties as nuisance parameters
 - » Very small deviations from nominal value
- » No sensitivity to mass ordering
- » Study of electron-neutrino component underway

Measuring neutrino oscillations

» Common to all oscillation experiments

- » Compare neutrino flux at production/detection, explain discrepancies with oscillations
- » Relevant differences between IceCube DeepCore and other oscillation experiments

IceCube DeepCore	Atmospheric (Super-Kamiokande)	Accelerator (MINOS, NovA, T2K)	
Initial flux obtained from models (tuned with measurements)		Near detectors \rightarrow initial flux well understood	
Large range in L (baseline) of 10-12,700 km		Tracking detectors	
Complex natural medium	Detection by Charankay sings	Dimensions: < 10m diameter x ~30 m length	
Open detector, order of Mton	~ 22.5 - 40 kton detector	Committed to single baseline	
Large range in energy, higher than any other experiment		Narrow energy range	
Detection by Cherenkov light produced over ten's of meters	Energy resolution ~ 10% Densely instrumented detectors, good measurement of hadrons Complicated neutrino interactions in "transition region" (< a few GeV)		
Limited particle ID: muon, non-muon			
Interactions mainly deep inelastic scattering			

Some of the main differences between experiments measuring the atmospheric parameters of oscillations. T2K is complicated to place, as Super-Kamiokande acts as far detector.

Systematic uncertainties used

Source of error		Nominal value from	Uncertainty
Neutrino interactions	Total cross-section scaling		Free
	Linear energy dependence GENIE model		E^(+/-0.03)
	Axial mass of non-DIS events	-	~ +/-20%*
Atmospheric neutrino flux	Overall normalization		Free
	Spectral index Honda 2012		E^(+/-0.04)
	NuE relative normalization		+/- 20%
Detection	Hadronic energy scaling	Geant4 (model)	+/- 5%
	DOM overall efficiency	Muons, flashers	+/- 10%
	DOM angular acceptance (scattering in hole-ice)	Fit to flasher data	As large as 50%‡
	Bulk-ice model		Two models
[•] Exact value depends on the ju	ndividual process		

 † Largest deviation for photons perpendicular to PMT direction

Agreement between data and MC

»Full 2D histogram neutrino oscillations

Evolution of oscillation analysis in IceCube DeepCore

Electron neutrinos from the atm

» Consistent with Honda flux

» Extrapolated to higher energies using H3a model

T. K. Gaisser, Astropart. Phys. 35, 801 (2012). M. G. Aartsen et al. Phys. Rev. D 89, 062007

FAQ from Hell

- » Galactic or extra-galactic?
 - »No hints yet
- »Northern vs southern sky?
 - »Looks different, but not significant
- » Going from tracks and cascades \rightarrow flavor
 - »Cascades ≈ NuE + NuTau + 0.4*NuMu
 - »Tracks ≈ 0.6*NuMu
- » "Prompt component" still uncertain
 - »Not a major uncertainty in the astrophysical flux (veto)

- »Using 3 years of data, HE starting events
- »37 neutrino candidates
 - »8 ± 4 atm. muons
 - »6 ⁺⁶/₋₂ atm. neutrinos
- »5.7 σ over background
- »Cascade-dominated
- »Poor angular resolution »Search extended to LE

Phys. Rev. Lett. 113, 101101

»Likelihood scans

» Different samples used in the joint LLH analysis

»Individual fits to different samples

»Flavor ratio

»Flavor ratio (compared to previous result in arXiv)

