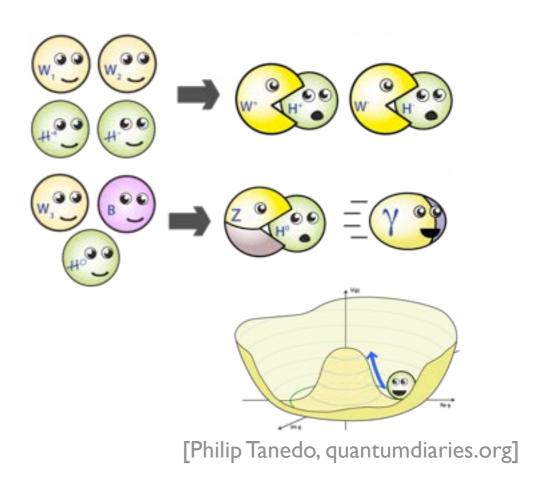

The Global Electroweak Fit

Roman Kogler
University of Hamburg
for the Gfitter group

50th Rencontres de Moriond EW La Thuile, March 14 - 21, 2015

The Gfitter group: M. Baak (CERN), J. Cùth (Univ. of Mainz), J. Haller (Univ. Hamburg), A. Hoecker (CERN), R. K. (Univ. Hamburg), K. Mönig (DESY), T. Peiffer (Univ. Hamburg), M. Schott (Univ. of Mainz), J. Stelzer (Univ. of Michigan)

Introduction


The H discovery

- something to celebrate
- something to contemplate

The SM incorporates the minimal version of the scalar sector

is there a single Higgs doublet?

The electroweak fit is a powerful tool to study the scalar sector from all perspectives

- in the SM
- modified H couplings
- test extensions of the scalar sector

2

The Electroweak Sector of the SM

Electroweak sector given by 3 parameters

once v, g, g' are known, all other parameters are fixed

Use the three most precise parameters

- $\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$
- $G_F : \Delta G_F/G_F = 5 \times 10^{-7}$
- $M_Z : \Delta M_Z / M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

$$M_W = \frac{v|g|}{2}$$

$$M_Z = \frac{v(g^2) + (g'^2)}{2}$$

$$\cos \theta_W = \frac{M_W}{M_Z}$$

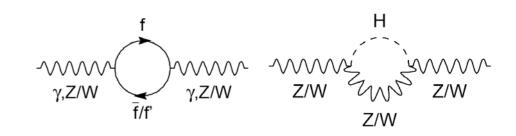
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$

The Electroweak Sector of the SM

Electroweak sector given by 3 parameters

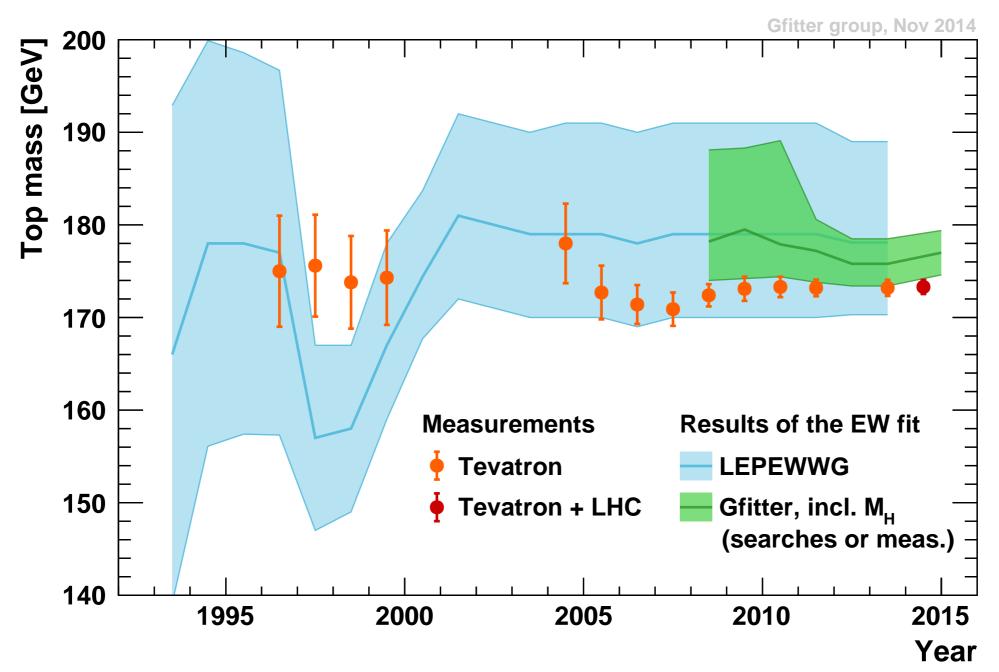
once v, g, g' are known, all other parameters are fixed

Use the three most precise parameters


- $\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$
- $G_F : \Delta G_F/G_F = 5 \times 10^{-7}$
- $M_Z : \Delta M_Z / M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

$M_W = \frac{v|g|}{2}$ $M_Z = \frac{v(g^2) + g'^2}{2}$ $\cos \theta_W = \frac{M_W}{M_Z}$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$


Radiative corrections

- modification of propagators and vertices
- electroweak form factors ρ , κ , Δr
 - depend on all parameters of the theory $(m_t, M_H, \alpha_s...)$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

Top Quark Mass from Loop Effects

- mt predictions from loop effects since 1990
- official LEPEWWG fit since 1993
- the fits have always been able to predict m_t correctly!

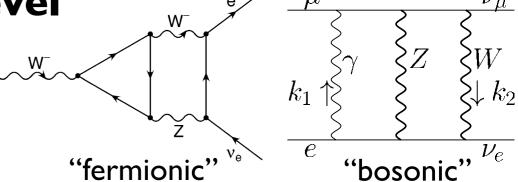
The Electroweak Fit

Disclaimer:

- there are several groups who routinely perform the electroweak fit
- be there are small differences in the methodology, the results agree very well
- ▶ I will focus on results from the Gfitter group [Gfitter group, EPJC 74, 3046 (2014)]

Experimental Input

Fit is overconstrained


- all free parameters measured $(\alpha_s(M_Z))$ unconstrained in fit)
 - most input from e⁺e⁻ colliders
 - M_Z: 0.002%
 - but crucial input from hadron colliders:
 - $m_t : 0.4\%$
 - Mw: 0.02%
 - M_H: 0.2%
 - remarkable precision (<1%)
- require precision calculations

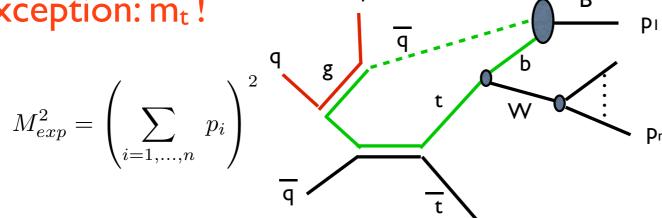
$\longrightarrow M_H$	[GeV]	125.14 ± 0.24	LHC
$\longrightarrow M_W$	/ [GeV]	80.385 ± 0.015	_{Tov}
Γ_W	[GeV]	2.085 ± 0.042	Tev.
$\overline{M_Z}$	[GeV]	91.1875 ± 0.0021	
Γ_Z	[GeV]	2.4952 ± 0.0023	
$\sigma_{ m had}^0$	d [nb]	41.540 ± 0.037	LEP
R_ℓ^0		20.767 ± 0.025	
$A_{ m FI}^{0,A}$	ℓ 3	0.0171 ± 0.0010	
A_ℓ	(*)	0.1499 ± 0.0018	SLD
\sin^2	$\theta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	ľ
A_c		0.670 ± 0.027	Lan
A_b		0.923 ± 0.020	
$A_{ m FI}^{0,0}$	<i>c</i> 3	0.0707 ± 0.0035	
$A_{ m FI}^{0,0}$	b 3	0.0992 ± 0.0016	LED
R_c^0		0.1721 ± 0.0030	LEF
R_b^0		0.21629 ± 0.00066	
$\Delta \alpha$	$^{(5)}_{ m had}(M_Z^2)$	2757 ± 10	I
	[GeV]	$1.27^{+0.07}_{-0.11}$	low E
\overline{m}_b	[GeV]	$4.20^{+0.17}_{-0.07}$	<u> </u>
\longrightarrow m_t	[GeV]	173.34 ± 0.76	Tev.+LHC

Calculations

All observables calculated at 2-loop level

Mw: full EW one- and two-loop calculation of fermionic and bosonic contributions

- [M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)]
- + 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]
- ► sin²θ¹_{eff}: same order as M_W, calculations for leptons and all quark flavours [M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]
- **partial widths** $\Gamma_{\rm f}$: fermionic corrections in two-loop for all flavours (includes predictions for $\sigma^0_{\rm had}$) [A. Freitas, JHEP04, 070 (2014)]



- ▶ Radiator functions: QCD corrections at N³LO [Baikov et al., PRL 108, 222003 (2012)]
- ► Tw: only one-loop EW corrections available, negligible impact on fit [Cho et al, JHEP 1111, 068 (2011)]
- ▶ all calculations: one- and two-loop QCD corrections and leading terms of higher order corrections

Theoretical Uncertainties

- estimated using a geometric series (a_n = a rⁿ), example: $\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_s)$
 - similar results from scale variations
- reasonable estimates for all observables

[A. Hoang arXiv:1412.3649, M. Mangano]

- kin definition, relation to mpole unknown
- uncertainties from colour structure, hadronisation and $m^{pole} \rightarrow m_t(m_t)$ smaller
- ▶ 10 additional free parameters, Gaussian likelihood
- important missing higher order terms:
 - $O(\alpha^2\alpha_s)$, $O(\alpha\alpha_s^2)$, $O(\alpha^2_{bos})$ (in some cases), $O(\alpha^3)$, $O(\alpha_s^5)$ (rad. functions)

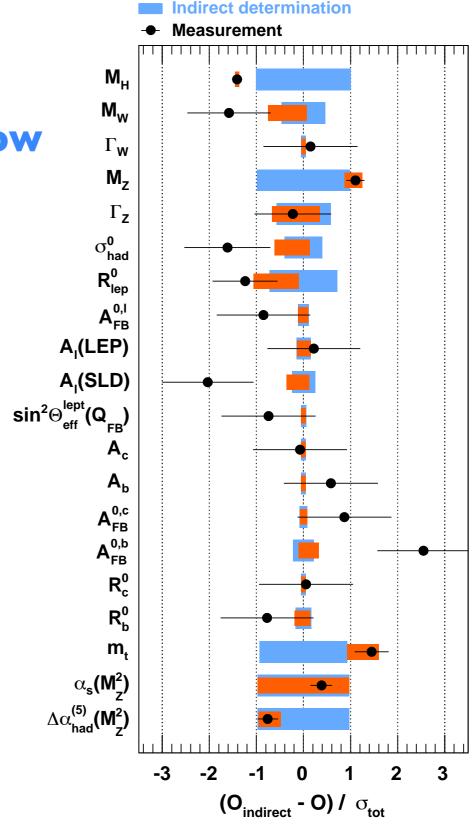
•				4		4
- 1	m		\frown	rta	ว n	11
		יעו	U		QIII	ľ

new in fit

Observable	Exp. error	Theo. error
M_W	15 MeV	4 MeV
$\sin^2 \theta_{ ext{eff}}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$
Γ_Z	2.3 MeV	0.5 MeV
$\sigma_{ m had}^0$	37 pb	6 pb
R_b^0	$6.6\cdot10^{-4}$	$1.5 \cdot 10^{-4}$
m_t	0.76 GeV	0.5 GeV
		A

SM Fit Results

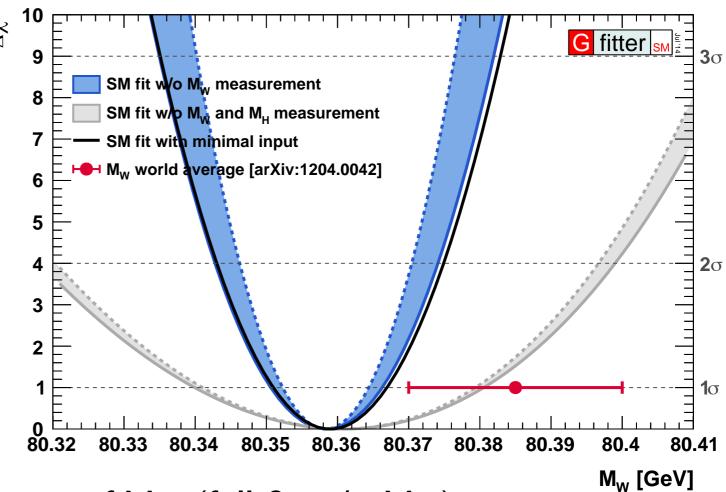
black: direct measurement (data)


orange: full fit

light-blue: fit excluding input from row

goodness of fit, p-value:

$$\chi^2_{min}$$
= 17.8 Prob(χ^2_{min} , 14) = 21%
Pseudo experiments: 21 ± 2 (theo)%

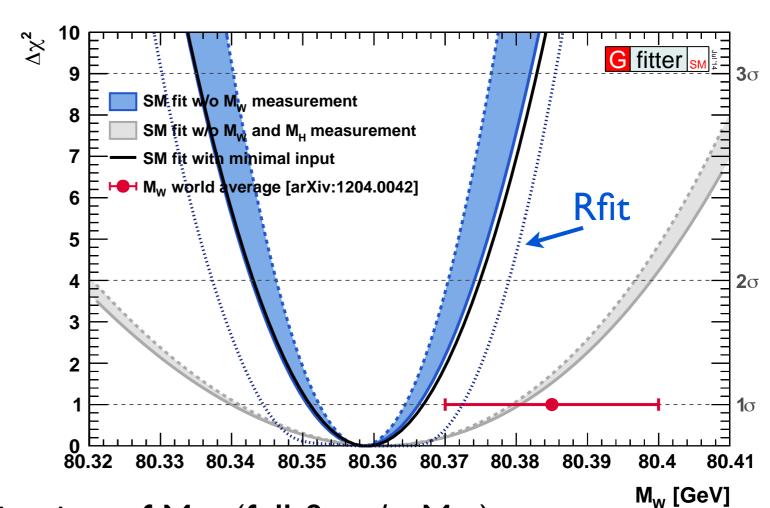

- $\chi^2_{min}(Z \text{ widths in } I\text{-loop}) = 18.0$
- χ^2_{min} (no theory uncertainties) = 18.2
- no individual value exceeds 3σ
- largest deviations in b-sector:
 - A^{0,b}_{FB} with 2.5σ
 - \rightarrow largest contribution to χ^2
- ▶ small pulls for M_H, M_Z
 - input accuracies exceed fit requirements

Indirect determination of W mass

$\Delta \chi^2$ profile vs M_W

- ▶ also shown: SM fit with minimal input: M_Z , G_F , $\Delta\alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H , and fermion masses
 - good consistency
- ▶ M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

• fit result for indirect determination of M_W (full fit w/o M_W):


$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$
 $\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV}$
 $= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}$

more precise than direct measurement (15 MeV)

Indirect determination of W mass

$\Delta \chi^2$ profile vs M_W

- ▶ also shown: SM fit with minimal input: M_Z , G_F , $\Delta\alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H , and fermion masses
 - good consistency
- ► M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

• fit result for indirect determination of M_W (full fit w/o M_W):

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\mathrm{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\mathrm{had}}} \\ \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\mathrm{theo}}M_W} \, \mathrm{GeV}$$

$$= 80.358 \pm 0.008_{\mathrm{tot}} \, \mathrm{GeV} \, \left(\, \delta_{\mathrm{m_t}} \, (|\, \mathsf{GeV}) : \pm 9 \, \mathsf{MeV}, \, \mathsf{Rfit} : \pm 13 \, \mathsf{MeV} \, \right)$$

more precise than direct measurement (15 MeV)

Indirect determination of mt

SM fit w/o m, measurement

SM fit w/d m, and M measurements

 $_{-}$ m_t from Tevatron $\sigma_{t\bar{t}}$ [arXiv:1207.0980]

 $^{-\text{HOH}}$ m^{pole} from ATLAS, σ_{H} [arXiv:1406.5375]

 m_t^{pole} from CNS, $\sigma_{t\bar{t}}$ (CMS) [arXiv:1307.1907]

 $\mathsf{m}^{\mathsf{pole}}_{\mathsf{t}}$ from ATLAS, $\sigma_{\mathsf{t\bar{t}+jet}}$ [ATLAS-CONF-2014-053]

175

► mtkin world average [arXiv:1403.4427]

$\Delta\chi^2$ profile vs m_t

- determination of m_t from Z-pole data (fully obtained from rad. corrections ~m_t²)
- alternative to direct measurements
- M_H allows for significantly more precise determination of m_t

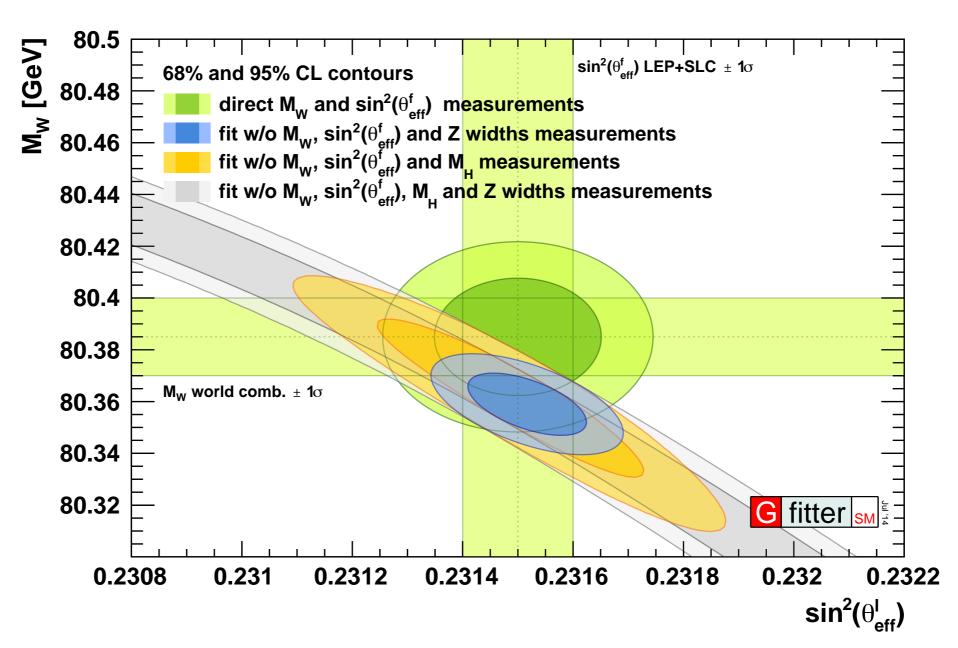
$$m_t = 177.0 \pm 2.3_{M_W, \sin^2 \theta_{\text{eff}}^f} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta \alpha_{\text{had}}} \pm 0.4_{M_Z} \text{ GeV}$$
 $= 177.0 \pm 2.4_{\text{exp}} \pm 0.5_{\text{theo}} \text{ GeV}$

170

• similar precision as determination from $\sigma_{t\bar{t}}$, good agreement

165

dominated by experimental precision


180

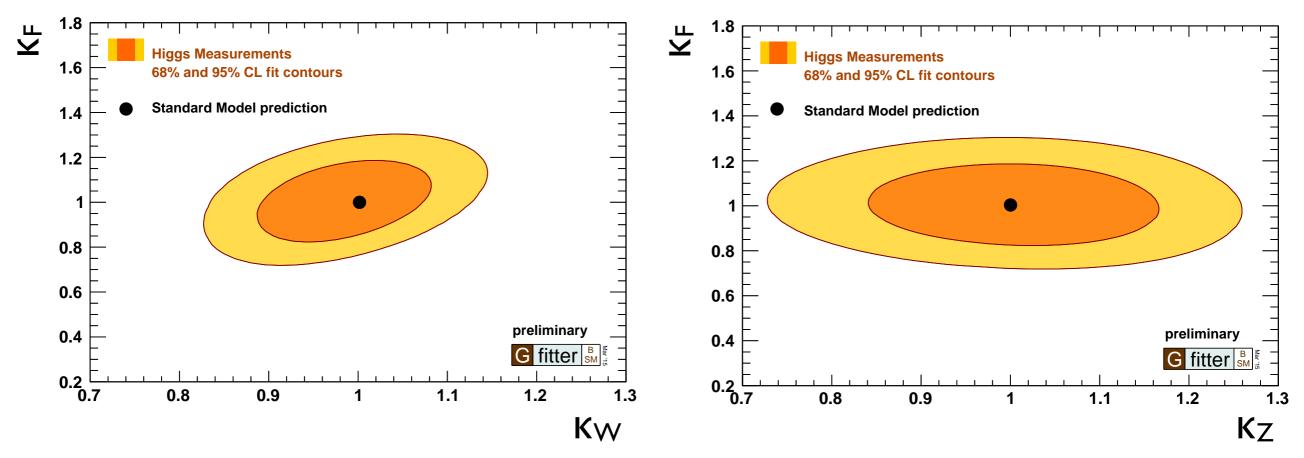
G fitter

185

190

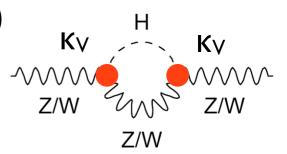
State of the SM: M_W vs $sin^2\theta_{eff}$

sensitive probes of new physics


Roman Kogler

- ▶ significant reduction of parameter space due to knowledge of M_H
- predictions are more precise than the direct measurements

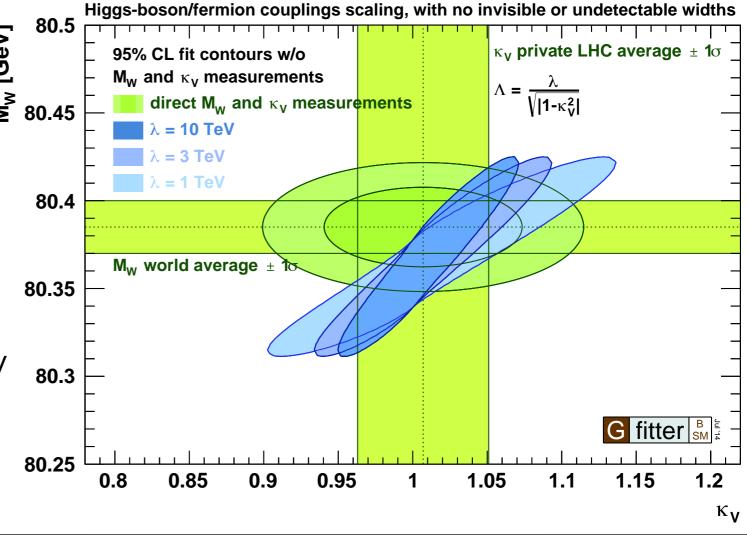
12


The Scalar Sector

- study of potential deviations of Higgs couplings from SM
- leading corrections only, parametrize deviations with effective couplings
- LHC and Tevatron data included using HiggsSignals [P. Bechtle et al., JHEP11, 039 (2014)]

- no BSM contributions on tree-level to fermion or vector-boson coupling
- stronger constraints on Kw than on Kz
- custodial symmetry holds, $\kappa_W = \kappa_Z = \kappa_V$

Constraints from EWPD

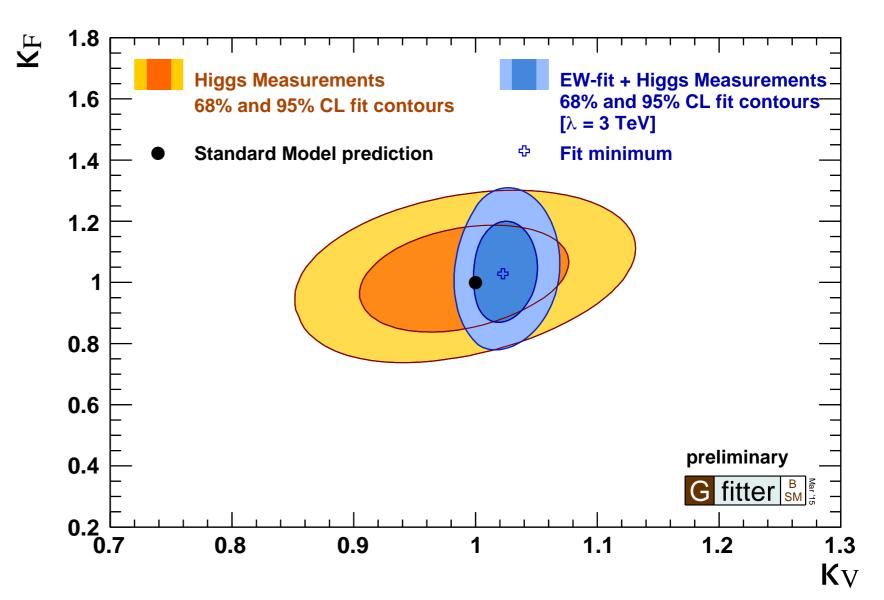

- consider specific model in "κ parametrisation":
 - scaling of Higgs-vector boson (κ_V) and Higgs-fermion couplings (κ_F), with no invisible/undetectable widths
- ▶ main effect on EWPD due to modified Higgs coupling to gauge bosons (K_V) [Espinosa et al. arXiv:1202.3697, Falkowski et al. arXiv:1303.1812], etc

$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

$$T = -\frac{3}{16\pi \cos^2 \theta_{\text{eff}}^{\ell}} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

$$\Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$$
80.4

- \blacktriangleright correlation between κ_V and M_W
 - slightly smaller values of M_W
 preferred

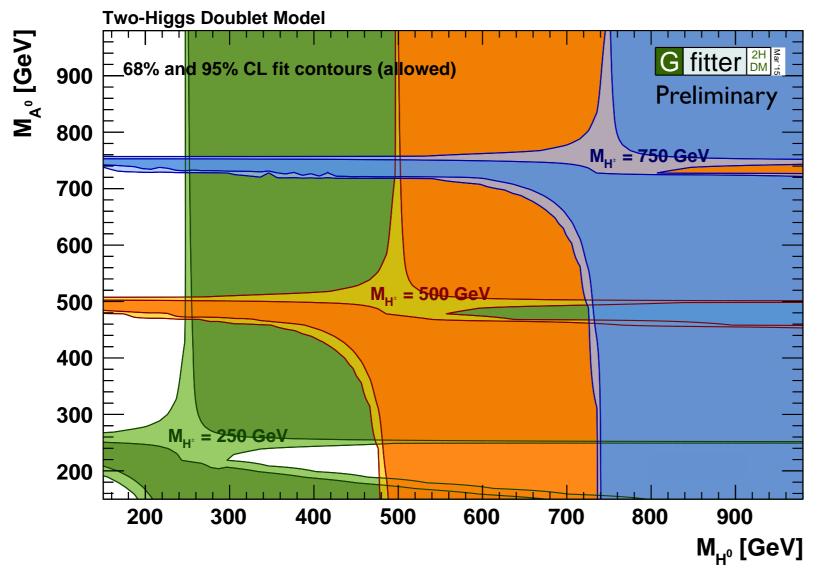

Higgs Coupling Results

Higgs coupling measurements:

- $\kappa_{V} = 0.99 \pm 0.08$
- $\kappa_F = 1.01 \pm 0.17$

Combined result:

- $\kappa_{V} = 1.03 \pm 0.02$ ($\lambda = 3 \text{ TeV}$)
- implies NP-scale of $\Lambda \geq 13 \, \text{TeV}$

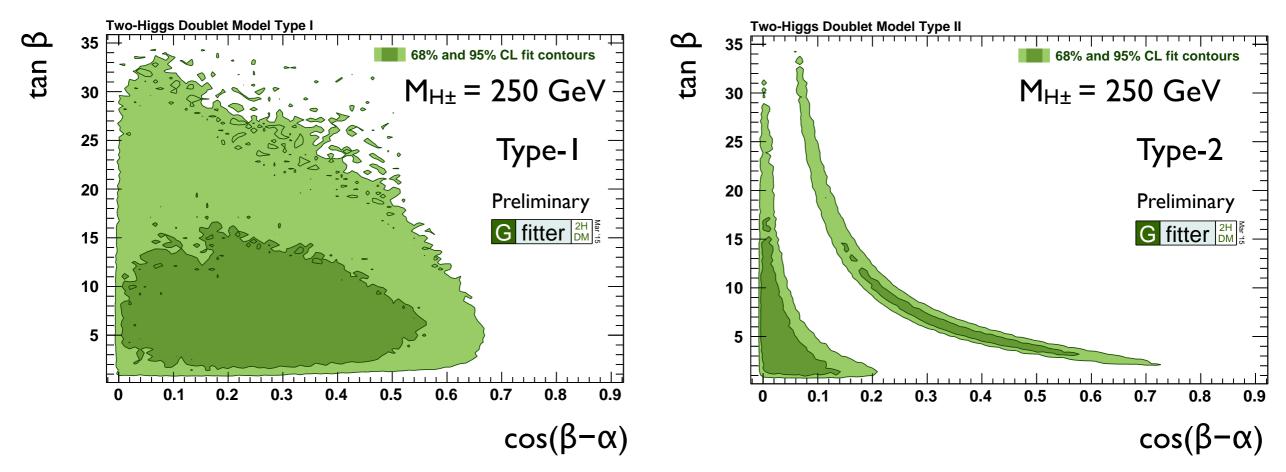


- some dependency for K_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV]
 - EW fit sofar more precise result for KV than current LHC experiments
 - EW fit has positive deviation of Ky from 1.0
 - many BSM models: $\kappa_V < 1$

Two Higgs Doublet Models

[talk by Alejandro Celis]

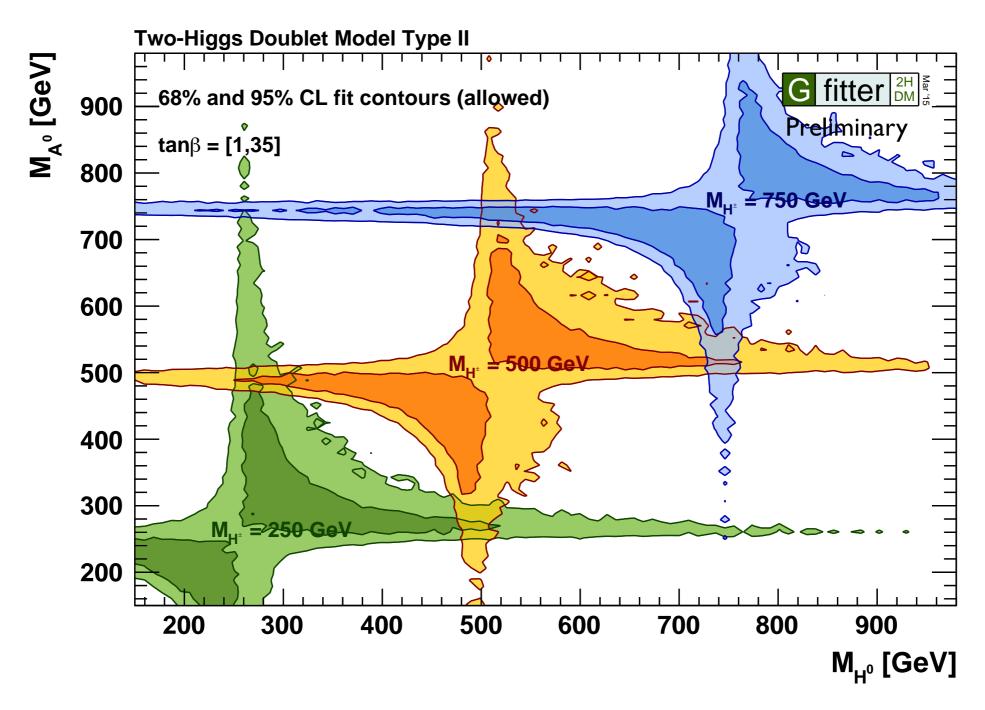
- extend the scalar sector by another doublet
- ▶ studies of Z₂ Type-1 and Type-2 2HDMs
 - difference in the coupling to down-type quarks
 - Type-2 related to MSSM, but less constrained



	Type I and Type II
Higgs	C_V
h	$\sin(\beta - \alpha)$
H	$\cos(\beta - \alpha)$
A	0

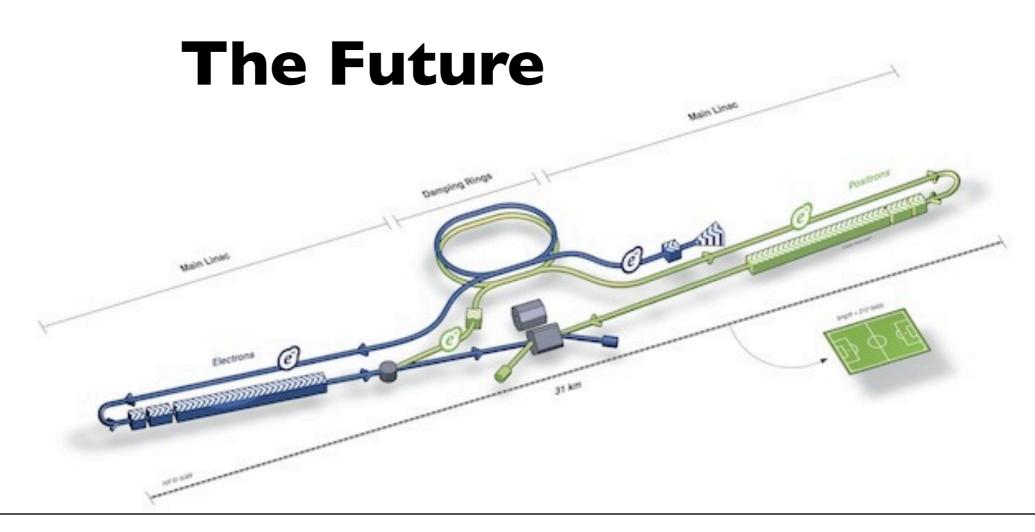
- constraints derived from EWPD using S,T,U formalism
- ▶ lightest scalarM_h = 125.1 GeV
- weak constraints on masses, since $\tan \beta$ and $\cos(\beta-\alpha)$ are unconstrained

2HDM and H Coupling Measurements

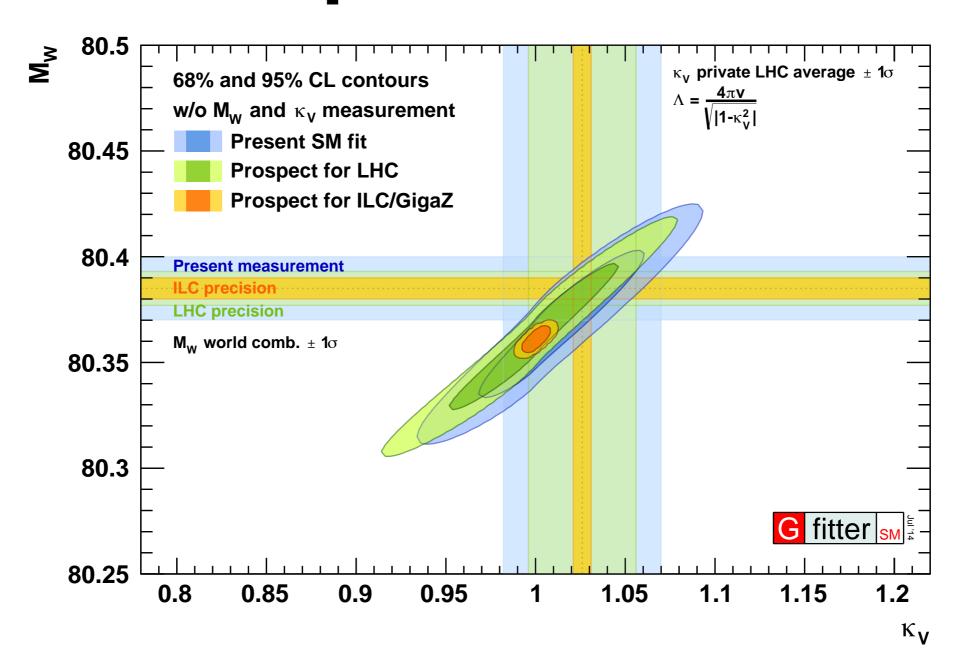

- coupling measurements place important constraints on 2HDMs
- predictions of BRs using 2HDMC [D. Eriksson et al., CPC 181, 189 (2010)]
- ▶ 7 additional, unconstraint parameters (4 masses, 2 angles, soft breaking scale): importance sampling with MultiNest [F. Feroz et al., arXiv:1306.2144]

- > additional constraints from flavour data
 - $B \rightarrow X_s \gamma$: $tan \beta > 1$

• $B_s \rightarrow \mu \mu$: constraints depending on M_H and $M_{H\pm}$


Global Fit to 2HDM of Type-2

- ▶ for given M_{H±} tight constraints from H coupling measurements and EWPD
- expect improvement from direct searches at the LHC [talks by Paolo Meridani, Mario Pelliccioni]



Future Improvements

Parameter	Present LHC	ILC/Giga	aZ
$\overline{M_H \; [{ m GeV}]}$	0.2 ->< 0.1	< 0.1	
$M_W \; [{ m MeV}]$	$15 \longrightarrow 8$	\longrightarrow 5	WW threshold
$M_Z \; [{ m MeV}]$	2.1 2.1	2.1	
$m_t \; [{ m GeV}]$	$0.8 \longrightarrow 0.6$	\longrightarrow 0.1	tt threshold scan
$\sin^2 \theta_{ m eff}^{\ell} \ [10^{-5}]$	16 16	→ 1.3	$\delta A^{0,f}_{LR} : 10^{-3} \rightarrow 10^{-4}$
$\Delta lpha_{ m had}^5(M_Z^2)$ [10 ⁻⁵]	$10 \longrightarrow 5$	5	low energy data, better α_s
$R_l^0 \ [10^{-3}]$	$25 \qquad 25$	\longrightarrow 4	high statistics on Z-pole
$\kappa_V (\lambda = 3 \text{TeV})$	$0.05 \longrightarrow 0.03$	\longrightarrow 0.01	direct measurement of BRs

- theoretical uncertainties reduced by a factor of 4 (esp. M_W and $\sin^2\theta_{eff}$)
 - implies three-loop EW calculations!
 - exception: δ_{theo} m_t (LHC) = 0.25 GeV (factor 2)

Prospects of EW Fit

- competitive results between EW fit and Higgs coupling measurements!
 - precision of about 1%
- ▶ ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP

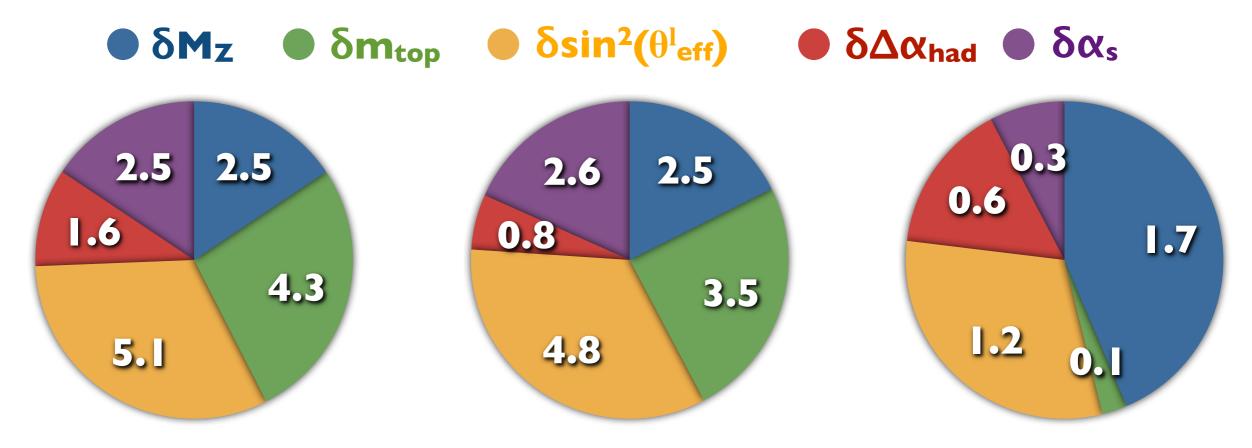
Mw: Impact of Uncertainties

Today

$$\delta_{\text{meas}} = 15 \text{ MeV}$$

$$\delta_{\text{fit}}$$
 = 8 MeV

LHC-300


$$\delta_{\text{meas}} = 8 \text{ MeV}$$

$$\delta_{\text{fit}}$$
 = 6 MeV

ILC/GigaZ

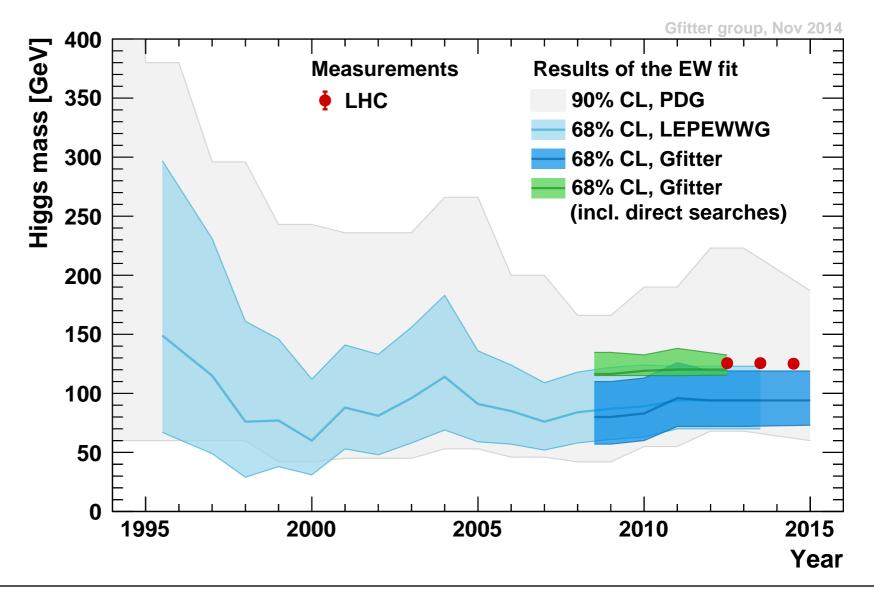
$$\delta_{\text{meas}} = 5 \text{ MeV}$$

$$\delta_{\rm fit}$$
 = 2 MeV

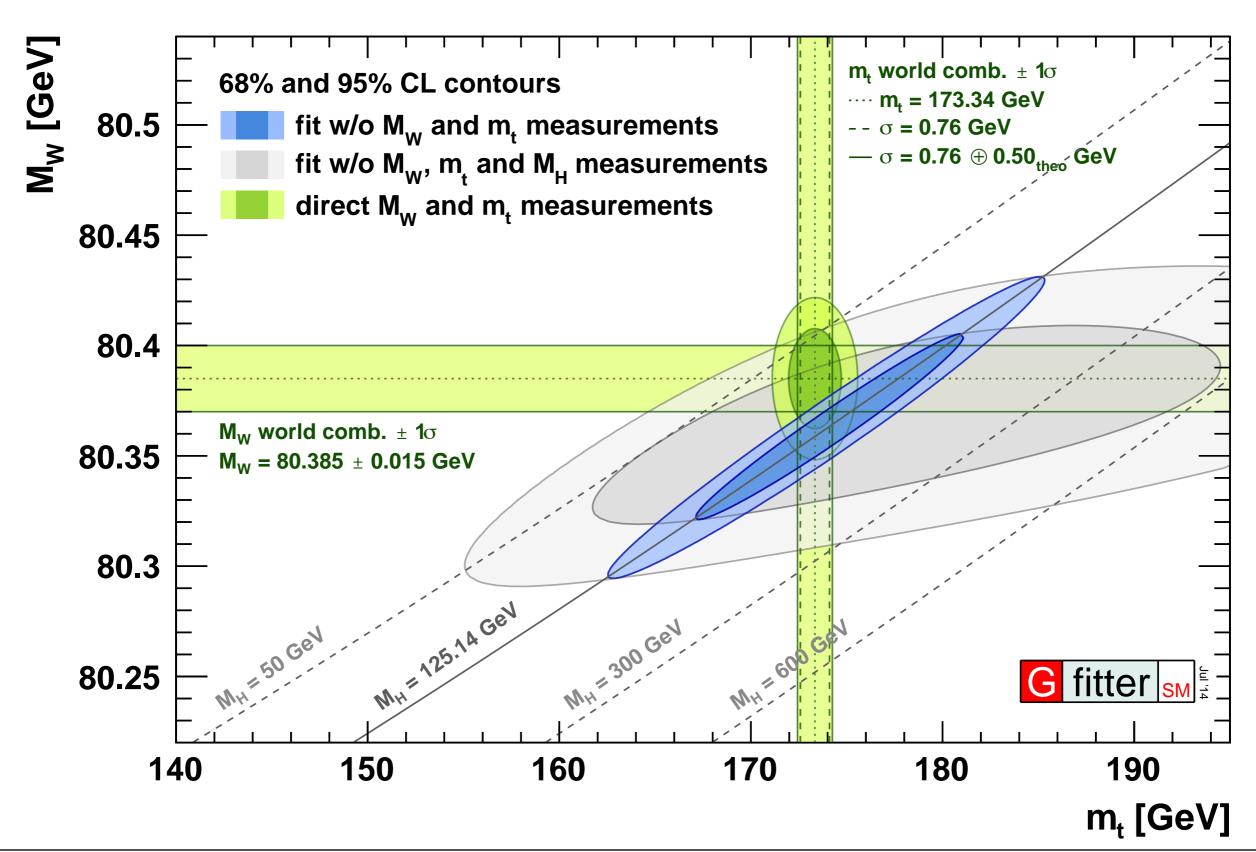
Impact of individual uncertainties on δM_W in fit (numbers in MeV)

• ILC/GigaZ: impact δM_Z of will become important again!

Summary


Huge success of the SM

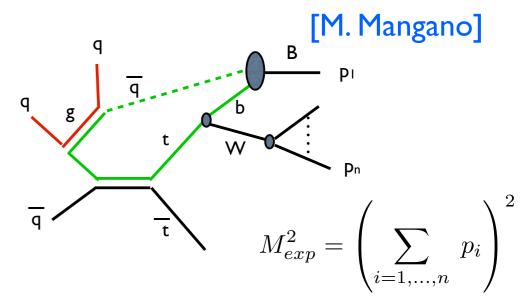
- ▶ EW fit is a powerful tool to study the scalar sector of the SM
 - impact on SM observables
 - modifications of H couplings
 - BSM extensions

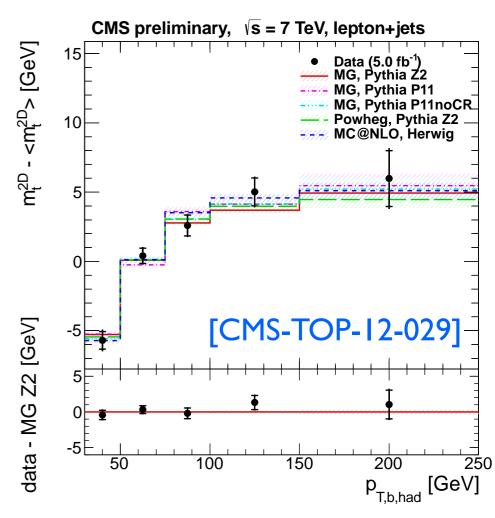

We cannot know Mw and sin²θ^leff precise enough

(theoretically and experimentally)

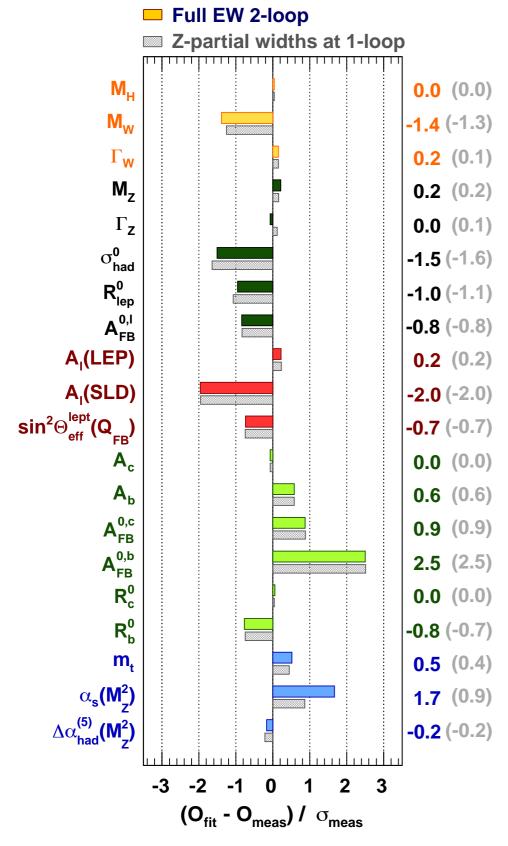
Thank You For Your Attention!

Roman Kogler


Additional Material

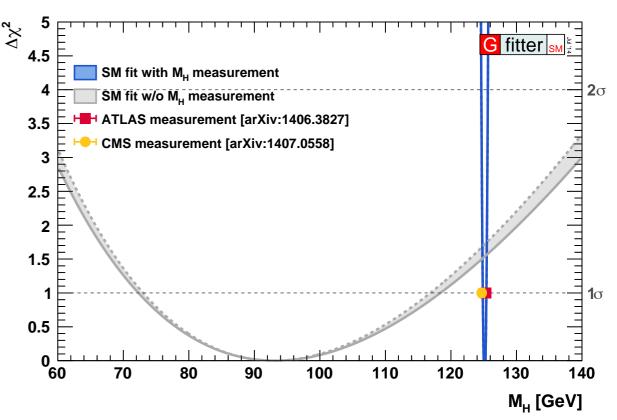

Interpreteation of mt measurements

Accuracy of mt?


- kinematic top mass definition
 - factorization: hard function, universal jet-function, non-pert.
 soft function [Moch et al, arXiv:1405.4781]
 - MC mass is (may be) related to the low scale short-distance mass in the jet function
 - but: no quantitative statement available
 - relating m_t^{kin} to $m_t^{pole}: \Delta m_t \geq \Lambda_{QCD}$
- colour structure and hadronisation
 - partly included in experimental uncertainties
 - study on kinematic dependencies of mt
- ▶ calculating m_t(m_t) from m_t^{pole}
 - QCD (three-loop): $\Delta m_t \approx 0.02 \text{ GeV}$
 - EW (two-loop): $\Delta m_t \approx 0.1 \text{ GeV}$

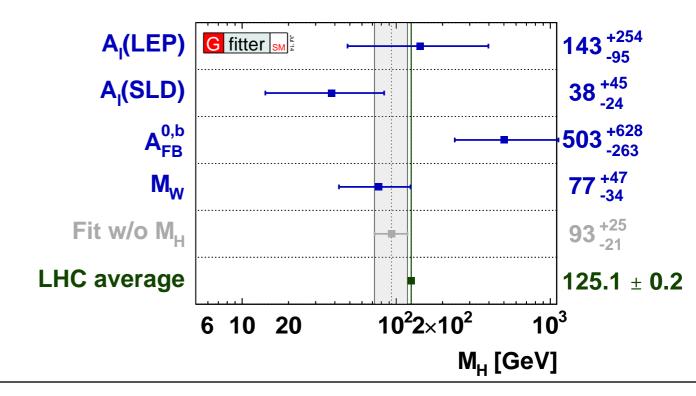
[Kniehl et al., arXiv:1401.1844]

SM Fit Results



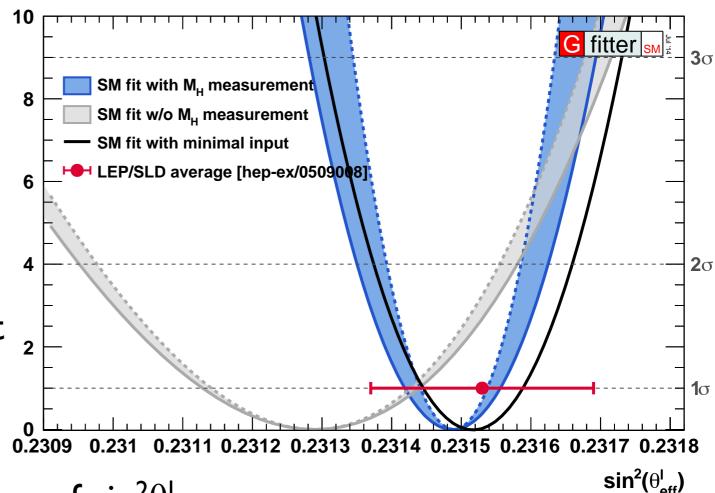
- no individual value exceeds 3σ
- largest deviations in b-sector:
 - $A^{0,b}_{FB}$ with 2.5σ
 - \rightarrow largest contribution to χ^2
- ▶ Small pulls for M_H, M_Z, m_c, m_b
 - input accuracies exceed fit requirements
- Goodness of fit, p-value: χ^2_{min} = 17.8 Prob(χ^2_{min} , 14) = 21% Pseudo experiments: 21 ± 2 (theo)%
- Small changes from switching between I and 2-loop calc. for partial Z widths and small M_W correction:
 - $\chi^2_{min}(Z \text{ widths in } I\text{-loop}) = 18.0$
 - χ^2_{min} (no $O(\alpha m_t \alpha_s^3)$ M_W correction) = 17.4
 - χ^2_{min} (no theory uncertainties) = 18.2

Higgs results


$\Delta \chi^2$ profile vs M_H

- grey band: fit without M_H measurement :
 - $M_H = 93^{+25}_{-21} \text{ GeV}$
 - \bullet consistent with measurement at 1.3σ
- blue line: full SM fit

impact of most sensitive observables

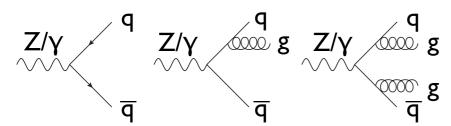

- determination of M_H,
 removing all sensitive observables
 except the given one
- known tension (3σ) between A_I(SLD), A^{0,b}_{FB}, and M_W clearly visible

The effective weak mixing angle

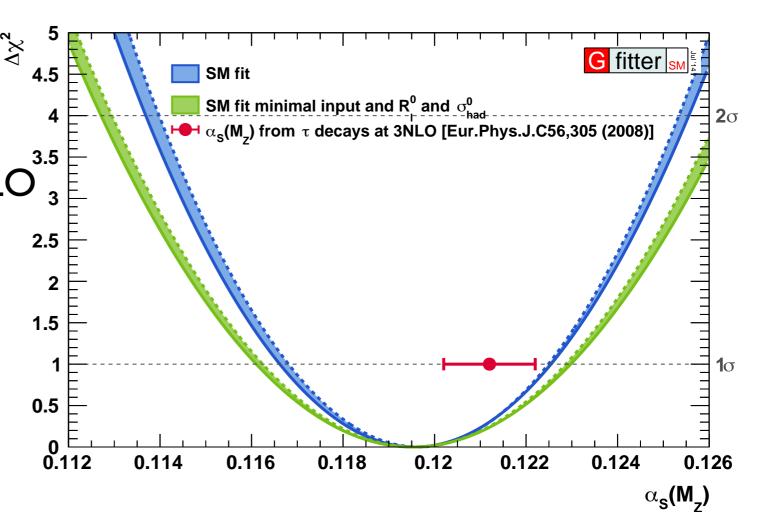
$\Delta\chi^2$ profile vs $sin^2\theta^I_{eff}$

- all measurements directly sensitive to sin²θ^l_{eff}
 removed from fit (asymmetries, partial widths)
 - good agreement with min input
- M_H measurement allows for precise constraint

• fit result for indirect determination of $\sin^2\theta_{eff}$:


$$\sin^{2}\theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_{t}} \pm 0.000016_{\delta_{\text{theo}}m_{t}} \pm 0.000015_{M_{Z}} \pm 0.000035_{\Delta\alpha_{\text{had}}} \\
\pm 0.000010_{\alpha_{S}} \pm 0.000001_{M_{H}} \pm 0.000047_{\delta_{\text{theo}}\sin^{2}\theta_{\text{eff}}^{f}} \\
= 0.23149 \pm 0.00007_{\text{tot}}$$

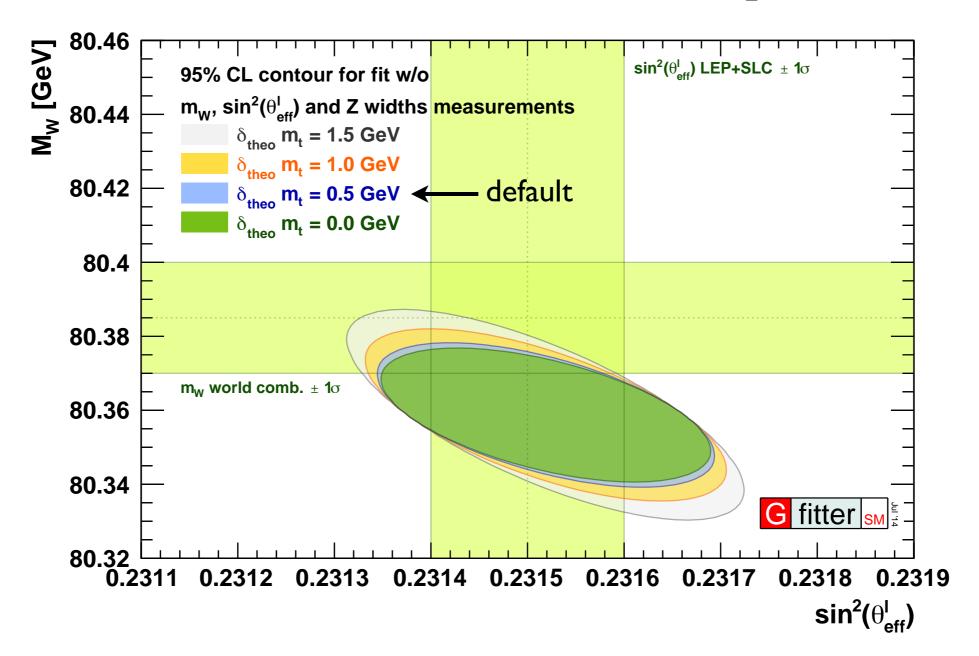
more precise than determination from LEP/SLD (1.6×10⁻⁴)


The strong coupling $\alpha_s(M_z)$

$\Delta \chi^2$ profile vs $\alpha_s(M_z)$

- b determination of α_s at full NNLO and partial NNNLO
- also shown: minimal input with two most sensitive measurements: R_{l} , σ^{0}_{had}

▶ M_H has no (visible) impact


$$\alpha_s(M_Z^2) = 0.1196 \pm 0.0028_{\text{exp}} \pm 0.0006_{\delta_{\text{theo}}\mathcal{R}_{V,A}} \pm 0.0006_{\delta_{\text{theo}}\Gamma_i} \pm 0.0002_{\delta_{\text{theo}}\sigma_{\text{had}}^0}$$

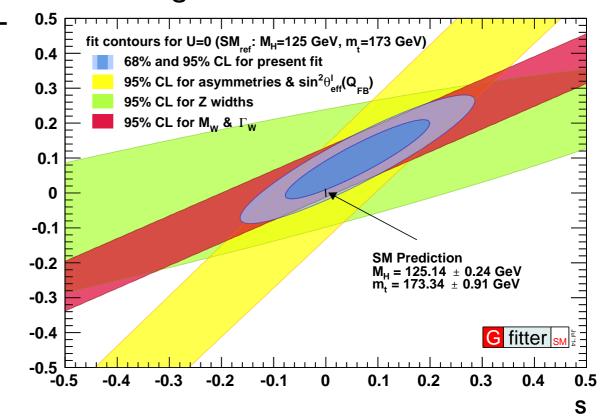
$$= 0.1196 \pm 0.0030_{\text{tot}}$$

More accurate estimation of theo. uncertainties (previously: δ_{theo} = 0.0001 from scale variations)

good agreement with WA, dominated by exp. uncertainty

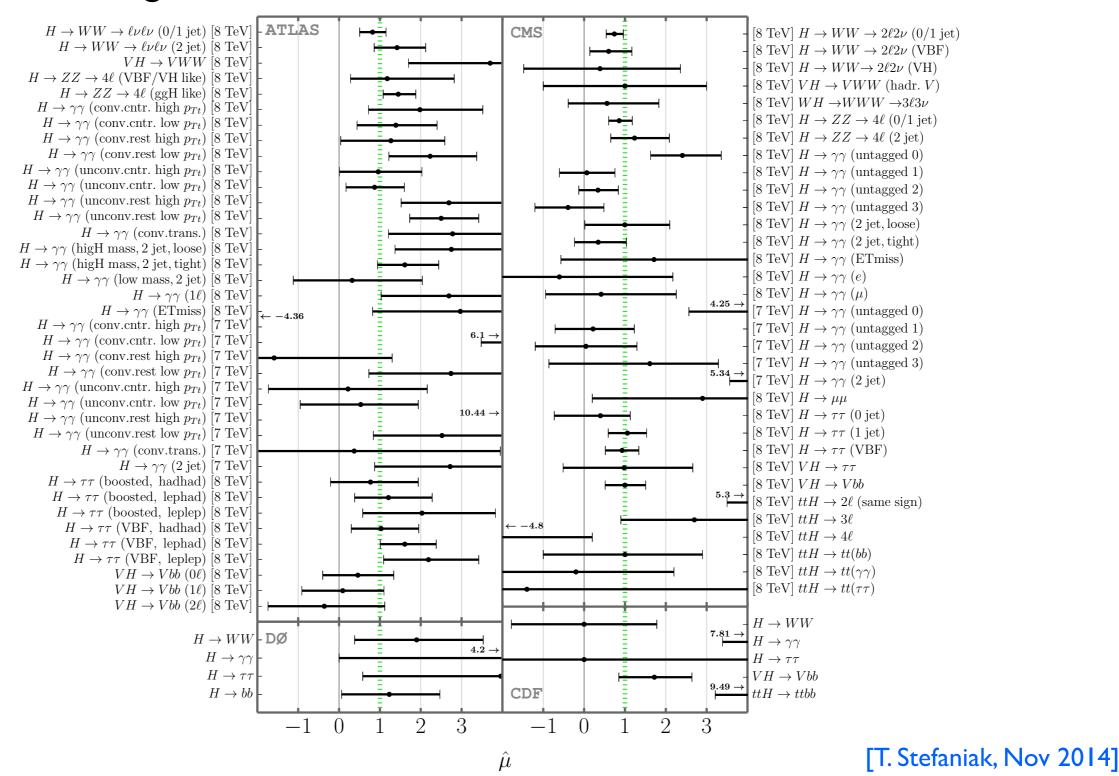
Theoretical uncertainty on mt

impact of variation in δ_{theo} m_t between 0 and 1.5 GeV


- better assessment of uncertainty on m_t important for the fit
- uncertainty of 0.5 GeV small impact on result

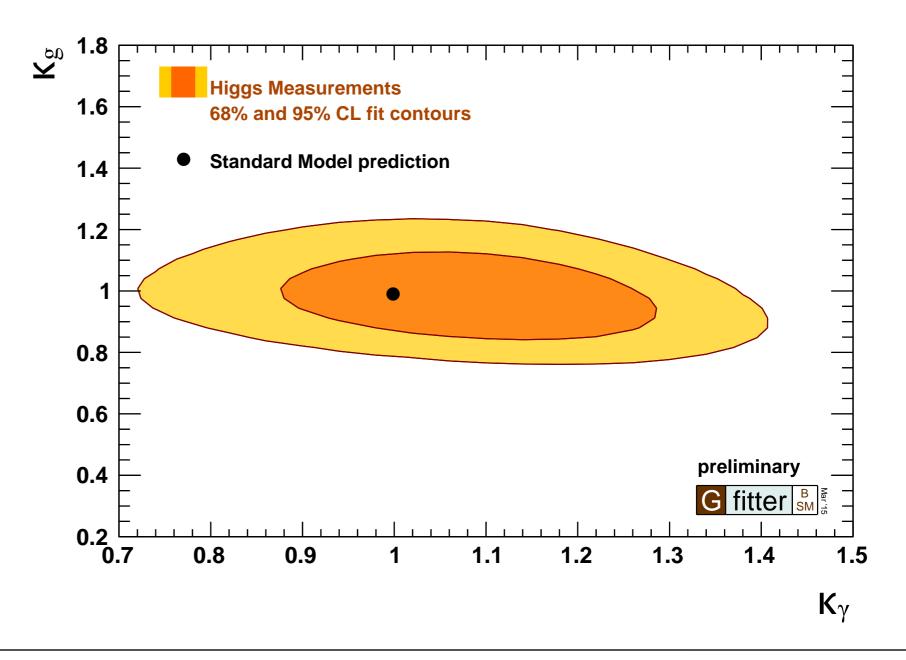
Constraints on BSM models

- if energy scale of NP is high, BSM physics could appear dominantly through vacuum polarisation corrections
- described by STU parameters [Peskin and Takeuchi, Phys. Rev. D46, I (1991)]
- SM: $M_H = 125 \text{ GeV}, m_t = 173 \text{ GeV}$ this defines (S,T,U) = (0,0,0)
- S,T depend logarithmically on MH
- Fit result: S T U $S = 0.05 \pm 0.11$ S I +0.90 -0.59 $T = 0.09 \pm 0.13$ T I -0.83 $T = 0.01 \pm 0.11$ U


stronger constraints with U = 0:

- no indication for new physics
- use this to constrain parameter space in BSM models

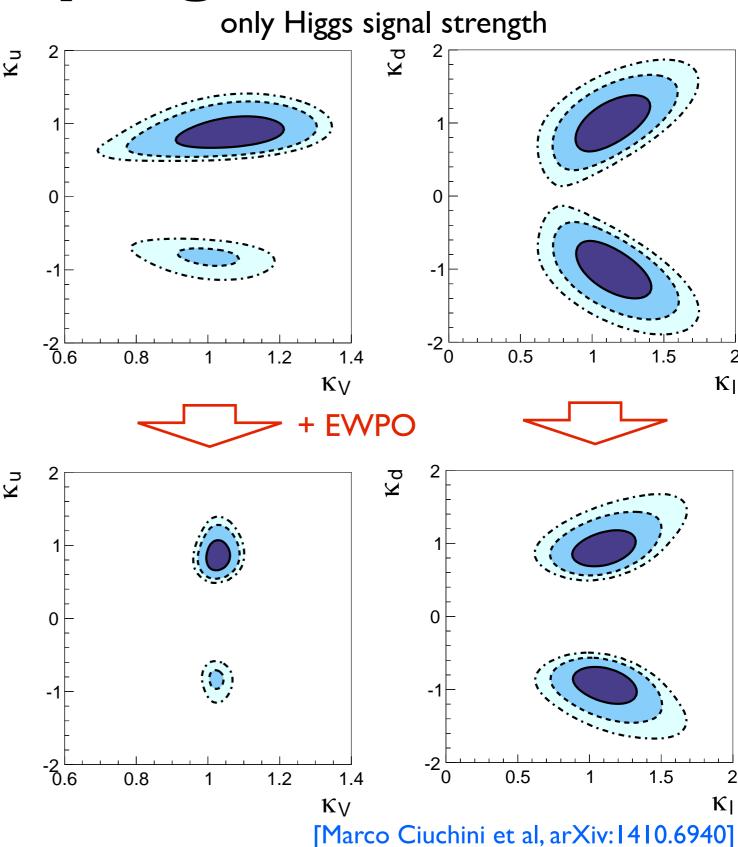
Measurements in HiggsSignals 1.2


in total: 80 signal rate + 4 mass measurements

Higgs Couplings in Loops

- New physics may show up in loops, contributing to gg and $\gamma\gamma$ channels
- Charged SUSY particles or additional charged scalars

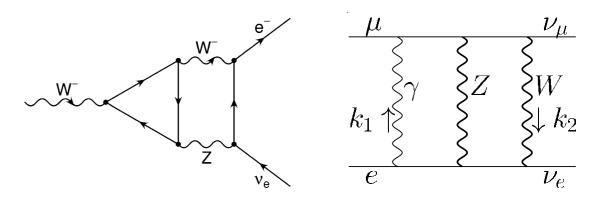
- Neglect modifications to tree level couplings
- Simultaneous fit:
 - $\kappa_g = 0.99 \pm 0.15$
 - $\kappa_{\gamma} = 1.08 \pm 0.21$

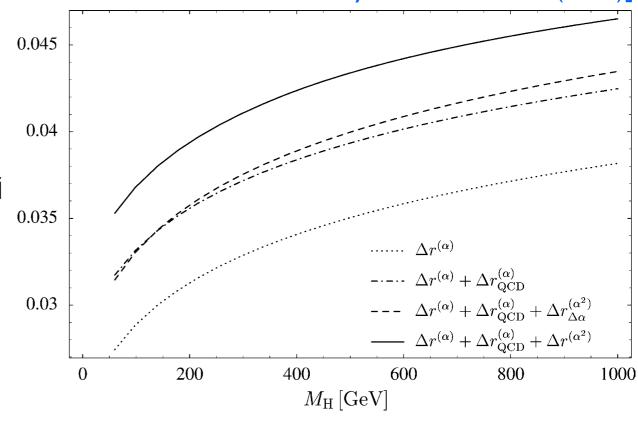


Higgs coupling results

- allowing for different couplings to up- and downtype quarks K_u and K_d
- stricter constraints due to EWPO, some gain also in the fermion sector

	68%	95%	Correlations
κ_V	1.03 ± 0.02	[0.99, 1.07]	1.00
κ_ℓ	1.10 ± 0.14	[0.82, 1.38]	0.14 1.00
κ_u	0.88 ± 0.12	[0.66, 1.15]	0.09 0.23 1.00
κ_d	0.92 ± 0.15	[0.65, 1.26]	1.00 0.14 1.00 0.09 0.23 1.00 0.28 0.35 0.81 1.00


 also possible to constrain coefficients of dimension-6 operators


Calculation of Mw

- Full EW one- and two-loop calculation of fermionic and bosonic contributions
- One- and two-loop QCD corrections and leading terms of higher order corrections
- Results for Δr include terms of order $O(\alpha)$, $O(\alpha\alpha_s)$, $O(\alpha\alpha_s^2)$, $O(\alpha^2_{\text{ferm}})$, $O(\alpha^2_{\text{bos}})$, $O(\alpha^2\alpha_s m_t^4)$, $O(\alpha^3 m_t^6)$
- Uncertainty estimate:
 - missing terms of order $O(\alpha^2\alpha_s)$: about 3 MeV (from $O(\alpha^2\alpha_s m_t^4)$)
 - electroweak three-loop correction $O(\alpha^3)$: < 2 MeV
 - three-loop QCD corrections $O(\alpha \alpha_s^3)$: < 2 MeV
 - Total: $\delta M_W \approx 4 \text{ MeV}$

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

A Freitas et al., Phys. Lett. B495, 338 (2000)]

Calculation of $sin^2(\theta_{eff})$

Effective mixing angle:

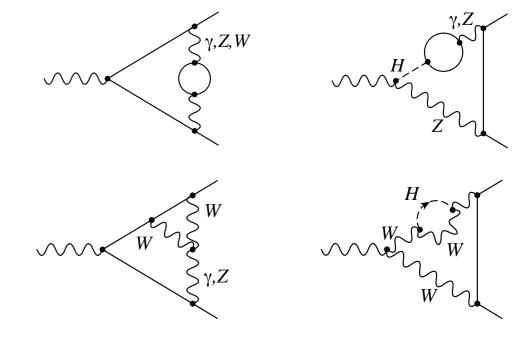
$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \left(1 - M_{\text{W}}^2 / M_{\text{Z}}^2\right) \left(1 + \Delta \kappa\right)$$

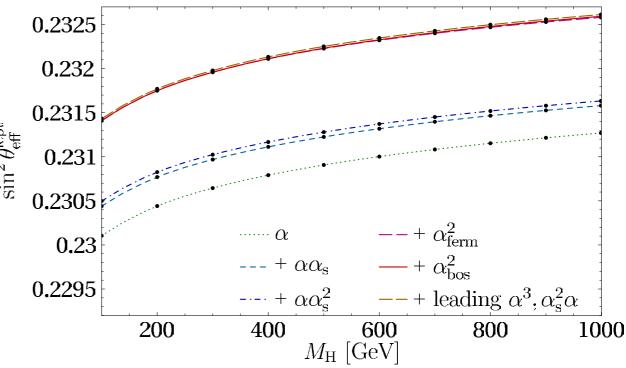
- ▶ Two-loop EW and QCD correction to $\Delta \kappa$ known, leading terms of higher order QCD corrections
- fermionic two-loop correction about 10^{-3} , whereas bosonic one 10^{-5}
- Uncertainty estimate obtained with different methods, geometric progression:

$$\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \, \mathcal{O}(\alpha \alpha_s).$$

 $\mathcal{O}(\alpha^2 \alpha_{\rm s})$ beyond leading $m_{\rm t}^4 = 3.3 \dots 2.8 \times 10^{-5}$

$$3.3...2.8 \times 10^{-5}$$

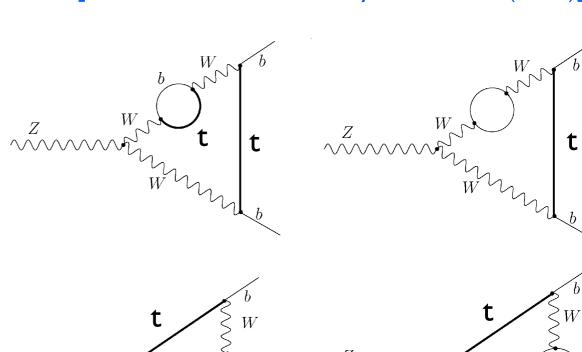

 $\mathcal{O}(\alpha\alpha_{\rm s}^3)$

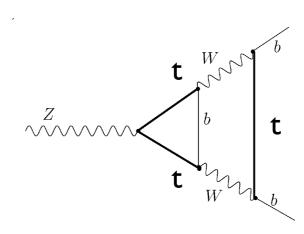

 $1.5 \dots 1.4$

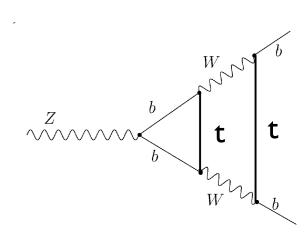
 $\mathcal{O}(\alpha^3)$ beyond leading $m_{\rm t}^6$ 2.5...3.5

Total: $\delta \sin^2 \theta_{\text{eff}}^1 \approx 4.7 \cdot 10^{-5}$

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)] [M Awramik et al., JHEP 11, 048 (2006)]


Calculation of $sin^2(\theta^{bb}_{eff})$


► Calculation of $\sin^2\theta_{eff}$ for b-quarks more involved, because of top quark propagators in the $Z \rightarrow b\bar{b}$ vertex


- Investigation of known discrepancy between $sin^2\theta_{eff}$ from leptonic and hadronic asymmetry measurements
- Two-loop EW correction only recently completed, effect of $O(10^{-4})$
- Now $\sin^2\theta^{bb}_{eff}$ known at the same order as $\sin^2\theta_{eff}$ for leptons and light quarks
- Uncertainty assumed to be of same size as for $\sin^2\theta_{eff}$:

 $\delta \sin^2 \theta^{\rm bb}_{\rm eff} \approx 4.7 \, 10^{-5}$

[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

Calculation of R⁰_b

Full two-loop calculation of Z→bb

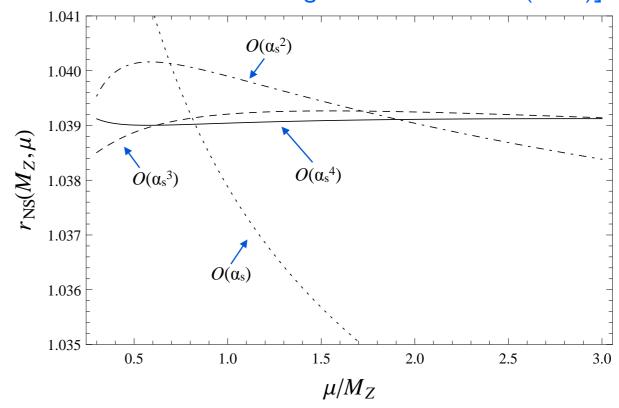
[A. Freitas et al., JHEP 1208, 050 (2012) Erratum ibid. 1305 (2013) 074]

▶ The branching ratio R^{0}_{b} : partial decay width of $Z \rightarrow b\overline{b}$ and $Z \rightarrow q\overline{q}$

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b} = \frac{1}{1 + 2(\Gamma_d + \Gamma_u)/\Gamma_b}$$

- \blacktriangleright Contribution of same terms as in the calculation of $sin^2\theta^{bb}_{eff}$
 - → cross-check the two results, found good agreement
- ▶ Two-loop corrections small compared to experimental uncertainty (6.6 · 10⁻⁴)

	I-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	I+2-loop QCD correction to gauge boson selfenergies
$M_{ m H}$ [GeV]	$\mathcal{O}(\alpha) + \text{FSR}_{\alpha,\alpha_{s},\alpha_{s}^{2}}$ $[10^{-4}]$	$ \begin{array}{c c} \mathcal{O}(\alpha_{\text{ferm}}^2) \\ 10^{-4} \end{array} $	$\mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{\alpha_{\text{s}}^3, \alpha \alpha_{\text{s}}, m_b^2 \alpha_{\text{s}}, m_b^4}$ $[10^{-4}]$	$ \begin{array}{c c} \mathcal{O}(\alpha\alpha_{\rm s}, \alpha\alpha_{\rm s}^2) \\ \hline [10^{-4}] \end{array} $
100	-35.66	-0.856	-2.496	-0.407
200	-35.85	-0.851	-2.488	-0.407
400	-36.09	-0.846	-2.479	-0.406

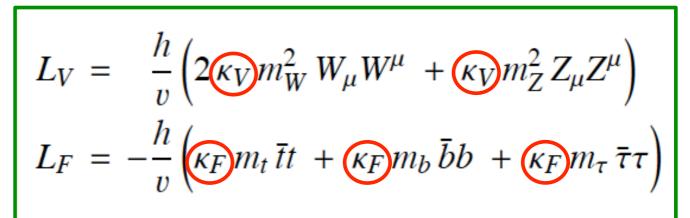

Radiator Functions

- Partial widths are defined inclusively: they contain QCD and QED contributions
- ▶ Corrections can be expressed as radiator functions $R_{A,f}$ and $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- ▶ Full four-loop calculation of QCD Adler function available (N³LO)
- Much reduced scale dependence
- Theoretical uncertainty of 0.1 MeV, compare to experimental uncertainty of 2.0 MeV

[D. Bardin, G. Passarino, "The Standard Model in the Making", Clarendon Press (1999)]


[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)] [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Modified Higgs Couplings

Study of potential deviations of Higgs couplings from SM

- BSM modelled as extension of SM through effective Lagrangian
 - Leading corrections only
- Benchmark model:
 - Scaling of Higgs-vector boson (K_V) and Higgs-fermion couplings (K_F)
 - No additional loops in the production or decay of the Higgs, no invisible Higgs decays and undetectable width
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (K_V)
 - Involving the longitudinal d.o.f.
- ▶ Most BSM models: $K_V < I$

