Evidence for H→ττ at ATLAS

Alex Tuna for the ATLAS Collaboration

50th Rencontres de Moriond EW 17 March 2015

Higgs with ATLAS at LHC

 $H \rightarrow \tau \tau \Rightarrow VBF H$

$BR(H \rightarrow \tau \tau) = 6\%$

big background from Z→ττ

⇒ best search: VBF production

Cahn and Dawson PLB 136 (1984) 196

 $H \rightarrow \tau \tau \Rightarrow VBF H$

$BR(H \rightarrow \tau \tau) = 6\%$

big background from Z→ττ

Cahn and Dawson PLB 136 (1984) 196

⇒ best search: VBF production

categorization, MVA

each category: separate signal vs. background with BDTs

categorization, MVA

m(ττ) [GeV]

categorization, MVA

m(VBF jets) [GeV]

$H \rightarrow \tau \tau$ results

 10^{4}

 10^{3}

10²

10

1

-4

Alexander Tuna (Penn)

Higgs results

$\underbrace{H \rightarrow \tau \tau}_{with \ bb, \ strongest}$ fermion measurement

 $H \rightarrow \tau \tau$ at HL-LHC

 \Rightarrow reject VBF jet candidates from other *pp*'s

Alexander Tuna (Penn)

summary

evidence for $H \rightarrow \tau \tau$ at ATLAS with Run-I dataset

observe 4.5σ (expect 3.4σ) $\mu = 1.4 \pm 0.4$

potential for precision measurements at HL-LHC

bonus

Cahn and Dawson	<u>PLB 136 (1984) 196</u>
ATLAS Η→ττ	arXiv:1501.04943 [hep-ex]
ATLAS Higgs summary	CombinedSummaryPlots/HIGGS
ATLAS H→ττ, HL-LHC	ATL-PHYS-PUB-2014-018
ATLAS ITK IDR	PLOT-UPGRADE-2014-001

7	T 🔊
K	

μ(H→ττ)

ATLAS m _H = 125.36	GeV	-σ(-σ(statistical) syst. excl. theo theory)	Tc ory)	tal unc ±1σ or	ertainty ۱µ
$\mathbf{H} \rightarrow \tau \tau$	$\mu = 1.4^{+0.4}_{-0.4}$	+ 0.3 - 0.3 + 0.3 - 0.2 + 0.1 - 0.1				
Boosted	$\mu = 2.1^{+0.9}_{-0.8}$	+ 0.5 - 0.5				
VBF	$\mu = 1.2^{+0.4}_{-0.4}$	+ 0.3 - 0.3				
7 TeV (Combine	d) $\mu = 0.9^{+1.1}_{-1.1}$	+ 0.8 - 0.8				
8 TeV (Combine	d) $\mu = 1.5^{+0.5}_{-0.4}$	+ 0.3 - 0.3				
$\mathbf{H} \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$\mu = 2.0^{+1.0}_{-0.9}$	+ 0.7 - 0.7 + 0.6 - 0.5 + 0.1 - 0.1				
Boosted	$\mu = 3.0^{+2.0}_{-1.7}$	+ 1.4 - 1.3	►			
VBF	$\mu = 1.7^{+1.0}_{-0.9}$	+ 0.8 - 0.8				
$\mathbf{H} ightarrow au_{lep} au_{had}$	$\mu = 1.0^{+0.5}_{-0.5}$	+ 0.4 - 0.3 + 0.4 - 0.3 + 0.1 - 0.1				
Boosted	$\mu = 0.9^{+1.0}_{-0.9}$	+ 0.6 - 0.6				
VBF	$\mu = 1.0^{+0.6}_{-0.5}$	+ 0.5 - 0.4				
$\mathbf{H} ightarrow au_{had} au_{had}$	$\mu = 2.0^{+0.9}_{-0.7}$	+ 0.5 - 0.5 + 0.8 - 0.5 + 0.1 - 0.1				
Boosted	$\mu = 3.6^{+2.0}_{-1.6}$	+ 1.0 - 0.9		· · · ·		
VBF	$\mu = 1.4^{+0.9}_{-0.7}$	+ 0.6 - 0.5				
	1		0	2	4	
√s = 7 TeV, √s = 8 TeV,	Si	Signal strength (µ)				

Alexander Tuna (Penn)

Δμ(Η→ττ)

Quarks and Leptons

excluded by gauge invariance. An attractive feature of the standard model is that the same Higgs doublet which generates W[±] and Z masses is also sufficient to give masses to the leptons and quarks. For example, to generate the electron

$$+ \left| \left(i \partial_{\mu} - g \frac{1}{2} \tau \cdot \mathbf{W}_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^{2} - V(\phi) \qquad \begin{cases} W^{\pm}, Z, \gamma, \text{ and Higgs} \\ \text{masses and} \\ \text{couplings} \end{cases}$$

 $-(G_1 \overline{L} \phi R + G_2 \overline{L} \phi_c R + \text{hermitian conjugate}). \begin{cases} \text{lepton and quark} \\ \text{masses and} \\ \text{coupling to Higgs} \end{cases}$

Z, H cross sections

QCD Z→ττ	QCD H(125)→ττ
1303 pb	1.218 pb
<u>HIGG-2013-32</u>	<u>CERNYellowReportPageAt8TeV</u>
EW Ζ→ττ	VBF H(125)→ττ
0.37 pb	0.0997 pb
<u>HIGG-2013-32</u>	<u>CERNYellowReportPageAt8TeV</u>