$|V_{ub}|$ using $\Lambda_b ightarrow p \mu^- \overline{ u}_\mu$ decays at LHCb

William Sutcliffe

On behalf of the LHCb Collaboration

Imperial College London

Imperial College London

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moriond Electroweak March 20, 2015

Why is $\left| V_{ub} \right|$ important?

- $\bullet~|\mathrm{V}_{ub}|$ is one of the least known of the CKM parameters.
- $|V_{ub}|$ constrains the unitarity triangle opposite the angle β .

.

1. Introduction

The $|V_{ub}|$ puzzle

Moriond Electroweak 2015

William Sutcliffe

 V_{ub} from $\Lambda_b \to p \mu^- \overline{\nu}_\mu$

1. Introduction

What makes $|\mathrm{V}_{\mathrm{ub}}|$ possible at LHCb?

- \bullet Long thought that measuring $|\mathrm{V}_{ub}|$ is impossible at hadron colliders.
- Lack the beam energy constraints of e^+e^- colliders.

Observable/mode	Current	LHCb (2017)	SuperB (2021)	Belle II (2021)	LHCb upgrade (10 years of running)	theory now
		$5{\rm fb}^{-1}$	75 ab ⁻¹	$50 \mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$	
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

Expected experimental sensistivities for $|\rm V_{ub}|$ as quoted in arXiv:1109.5028 (2011).

Moriond Electroweak 2015

- $26 \times 10^{10} \ b \bar{b}$ pairs.
- Choose $\Lambda_b \rightarrow p \mu^- \overline{\nu}_\mu$
 - Excellent μ and p PID.
- Precision vertexing and tracking.

William Sutcliffe

2. Strategy

Analysis strategy

• Normalise $\Lambda_b \rightarrow p\mu\nu$ to $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK\pi)\mu\nu$ in the high $q^2 (= m_{\mu\nu}^2)$ region where theory uncertainty is lowest:

$$\frac{\mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} = \frac{\mathcal{N}(\Lambda_b \to p\mu^- \overline{\nu}_\mu)}{\mathcal{N}(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \overline{\nu}_\mu)} \times \frac{\epsilon(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \overline{\nu}_\mu)}{\epsilon(\Lambda_b \to p\mu^- \overline{\nu}_\mu)} \times \mathcal{B}(\Lambda_c \to pK\pi)$$

- 2012 Dataset ($\sim 2 \mathrm{fb}^{-1}$)
- Recent measurement of $\mathcal{B}(\Lambda_c \to pK\pi)$ from Belle [arXiv:1312.7826]

$$R_{exp} = R_{theory} (|V_{ub}|^2 / |V_{cb}|^2)$$

 $R_{theory} = 1.470 \pm 0.115(stat) \pm 0.104(syst)$ W. Detmold, C. Lehner and S. Meinel [arXiv:1503.01421]

William Sutcliffe

3. Selection

Selection

 Boosted decision tree removes backgrounds with additional charged tracks that could vertex with $p\mu$ candidate.

3. Selection

The corrected mass

- Fit the corrected mass: $M_{corr} = \sqrt{p_{\perp}^2 + M_{p\mu}^2} + p_{\perp}$
- Determine its uncertainty.
- Reject candidates if: $\sigma_{M_{corr}} > 100 \, {\rm MeV}/c^2$
- Compare simulated signal and background shapes for low and high $\sigma_{M_{corr}}$
- Truncation at m_{Λ_b} due to q^2 cut.
- All curves normalised to unit area.

Moriond Electroweak 2015

Signal fit

• Fit $p\mu$ corrected mass, $N(\Lambda_b \rightarrow p\mu^- \overline{\nu}_{\mu}) = 17687 \pm 733$.

• First observation of the decay $\Lambda_b \rightarrow p \mu^- \overline{\nu}_{\mu}$.

LHCB-PAPER-2015-013

Normalisation fit

• Fit $pK\pi\mu$ corrected mass, $N(\Lambda_b \to (pK\pi)\mu^-\overline{\nu}_\mu) = 34255 \pm 571$.

LHCB-PAPER-2015-013

Relative efficiency and systematic uncertainties

- Efficiency from simulation with many data-driven corrections. $\epsilon(\Lambda_b \rightarrow p\mu^- \overline{\nu}_{\mu})/\epsilon(\Lambda_b \rightarrow (\Lambda_c \rightarrow pK\pi)\mu^- \overline{\nu}_{\mu}) = 3.52 \pm 0.20$
- Systematics:

Source	Relative uncertainty (%)	_		
${\cal B}(\Lambda_c o ho {\cal K}^+ \pi^-)$	$^{+4.7}_{-5.3}$	-		
Trigger	3.2			
Tracking	3.0	LHCb-preliminary		
Λ_c selection efficiency	3.0	UCD DADED 0015 019		
N^* shapes	2.3	HCB-PAPER-2015-013		
Λ_b lifetime	1.5			
Isolation	1.4			
Form factor	1.0			
Λ_b production	0.5			
q ² migration	0.4			
PID	0.2			
Total	$+7.8 \\ -8.2$	- ≰□▶∢@▶∢글⊁∢글⊁ 글 ���		

Moriond Electroweak 2015

7. Results

Ratio of branching fractions and $\mathcal{B}(\Lambda_b \rightarrow p \mu^- \overline{\nu}_{\mu})$

• Measure the ratio of branching fractions to be:

 $\frac{\mathcal{B}(\Lambda_b \to \rho \mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\text{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \,\text{GeV}^2/c^4}} = (1.00 \pm 0.04(\text{stat}) \pm 0.08(\text{syst})) \times 10^{-2}$

LHCb-preliminary

• Can use theory to extrapolate to a full branching fraction for $\Lambda_b \! \to p \mu^- \overline{\nu}_\mu$ decays:

$$\mathcal{B}(\Lambda_b \!
ightarrow
ho \mu^- \overline{
u}_\mu) = (3.92 \pm 0.83) imes 10^{-4}$$

LHCb-preliminary

LHCB-PAPER-2015-013

11/17

7. Results

The $\left|\mathrm{V}_{ub}\right|$ puzzle revisited

Moriond Electroweak 2015

IHC

7. Results

What can LHCb say?

Moriond Electroweak 2015

8. Implications

Implications

- \bullet Total uncertainty on $|\mathrm{V_{ub}}|$ is 7.2% (8.8% for exclusive average).
- Experimental uncertainty is 4.6%.
- $|V_{ub}|$ from $\Lambda_b \rightarrow p \mu^- \overline{\nu}_{\mu}$ is 3.5 σ below the inclusive average.
- $\bullet\,$ Can check the consistency of $|V_{ub}|/|V_{cb}|$ with β and $\gamma.$

8. Implications

Can new physics explain the puzzle?

• Fit favours a right handed current over SM ($\epsilon_R = 0$)

 V_{ub} from $\Lambda_b \to \rho \mu^- \overline{\nu}_\mu$

15/17

8. Implications

Can new physics explain the puzzle?

χ²/n_{dof} = 16.4/2, p-value = 3 × 10⁻⁴
No longer possible to get a good global fit.

16/17

9. Conclusion

Conclusion

- $\Lambda_b
 ightarrow p \mu^- \overline{
 u}_\mu$ decays are observed for the first time:
 - $\mathcal{B}(\Lambda_b \to \rho \mu^- \overline{\nu}_{\mu}) = (3.92 \pm 0.83) \times 10^{-4}$
- $\bullet\,$ The first determination of of $|V_{ub}|$ at a hadron collider and in a baryon decay is:

•
$$|V_{ub}| = (3.27 \pm 0.23) \times 10^{-3}$$

- This measurement is 3.5σ below the inclusive measurement but agrees well with current exclusive average using $B \rightarrow \pi I \nu$ decays.
- $\bullet\,$ Right-handed currents no longer can explain the $|V_{ub}|$ puzzle.

Many thanks to Stefan Meinel for pioneering the LQCD predictions for $\Lambda_b \rightarrow p \mu^- \overline{\nu}_{\mu}$ and $\Lambda_b \rightarrow \Lambda_c \mu^- \overline{\nu}_{\mu}$. Additional thanks to Florian Bernlochner.

Theory ratio

• Use the latest Lattice QCD results for these decays to calculate:

 $R_{theory} = 1.470 \pm 0.115(stat) \pm 0.104(syst)$

W. Detmold, C. Lehner and S. Meinel [arXiv:1503.01421]

Moriond Electroweak 2015

William Sutcliffe

 V_{ub} from $\Lambda_b \to p \mu^- \overline{\nu}_\mu$

Lattice Calculation

- Calculate 6 form factors (3 vector, 3 axial) for each decay.
- Lattice QCD with 2 + 1 dynamical domain-wall fermions.
- Calculation performed with six pion masses and two different lattice spacings.
- b and c quarks implemented with relativistic heavy-quark actions.
- Uses gauge-field configurations generated by the RBV and UKQCD collaborations.
- b → u and b → c currents renormalised with a mostly nonperturbative method.
- Parametrises the form factor q^2 dependence with a z expansion.
- Systematics include: the continuum extrapolation uncertainty, the kinematic (q^2) extrapolation uncertainty, the perturbative matching uncertainty, the uncertainty due to the finite lattice volume and the uncertainty from the missing isospin breaking effects.

W. Detmold, C. Lehner and S. Meinel [arXiv:1503.01421]

Branching Fraction Extrapolation Factor

$$\begin{split} \mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_{\mu}) = &\tau_{\Lambda_b} \frac{\mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu^- \overline{\nu}_{\mu})_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} |V_{cb}|^2 F_{theory} \\ = &\tau_{Lb} R_{exp} |V_{cb}|^2 \int_{7 \,\mathrm{GeV}^2/c^4}^{q'_{max}} \frac{d\Gamma(\Lambda_b \to \Lambda_c \mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{cb}|^2 dq^2 \\ &(1) \\ &\times \frac{\int_{0 \,\mathrm{GeV}^2/c^4}^{q_{max}} \frac{d\Gamma(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{ub}|^2 dq^2}{\int_{15 \,\mathrm{GeV}^2/c^4}^{q_{max}} \frac{d\Gamma(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{ub}|^2 dq^2} \end{split}$$

Moriond Electroweak 2015

3

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

21/17 LHCb

