⁹⁶Zr analysis with the NEMO-3 detector

Young Scientists Forum Rencontres de Moriond EW 2015

Guillaume EURIN

for the NEMO Collaboration

LAL Orsay, UCL London

2015/03/16

NEMO-3 : the Neutrino Ettore Majorana Observatory

- ▶ 2003 to 2011 in the Modane Underground Lab (4800 m.w.e.)
 - ► Unique 2β experiment : tracking and calorimetry direct 2e⁻ reconstruction ⇒ powerful background rejection
- Background mainly from natural radioactivity
- Measurement in individual analysis channels (1 e^- , 1 $e^-n\gamma$, ...)

Kinematic variables : individual energies, time of flight, curvature, ...

7 2 2

Example of a background channel : 1 electron - 1 γ

- Background activities needed for signal measurement
- $1e1\gamma$: activity measurements for β - γ emitters
- Fit of the total energy $E_{tot} = E_e + E_{\gamma}$

Rejection of $^{40}\mathrm{K}$

- Rejection optimised on MC
- Elliptic cut on individual energies
 (E_{min}, E_{max}) :
- ▶ 96 % of 40 K rejected
- ▶ 79 % of $2\nu 2\beta$ selected

 $2\nu 2\beta$

NEMO-3 $2\nu 2\beta$ Measurement before 40 K rejection

- ► Half-life measurement under approval compatible with previously published value : $T_{1/2}^{2\nu} = 2.35 \pm 0.14 \pm 0.16 \ 10^{19} \text{ yr (Nuclear Physics A, 847, 168-179, 2010)}$
- S/B increased by a factor of 3-4
- \blacktriangleright Exposure increased by \sim 30 %

NEMO-3 $2\nu 2\beta$ Measurement after ⁴⁰K rejection

- ► Half-life measurement under approval compatible with previously published value : $T_{1/2}^{2\nu} = 2.35 \pm 0.14 \pm 0.16 \ 10^{19} \text{ yr (Nuclear Physics A, 847, 168-179, 2010)}$
- S/B increased by a factor of 3-4
- \blacktriangleright Exposure increased by \sim 30 %

$2\nu 2\beta$ decay of $^{96}{ m Zr}$ to excited states

- Rarer than decay to ground state (phase space) and lower detection efficiency
- Two γ -particles in cascade accompanying the two electrons :

 Strong kinematic signature only accessible with NEMO detection technique

NEMO-3 $2\nu 2\beta$ decay to excited states

 2 electrons and 1 or 2 γ-particles channel

 $2\nu 2\beta \ (0^+ \to 0_1^+)$

∑1.4 № 1.2 № 1 ₩0.8

0.6

0.4

0.2

► S/B optimisation in (ΣE_e, ΣE_γ) on Monte Carlo simulations

60

50

40

30

20

10

2.5

 ΣE_e [MeV]

0.6

0.4

0.2

0.5

1.5 2

0.5

YSF Moriond EW 15 - 96 Mo in NEMO-3

NEMO-3 $2\nu 2\beta$ decay to excited states

- Distribution of $E_{tot} = E_1 + E_2 + E_{N\gamma}$
- Small excess of events over expected background
- Careful study of systematic effects of backgrounds
- First limit on the decay of ⁹⁶Zr to excited states with NEMO-3 under approval

Summary

- ► NEMO-3 : Unique experiment capable of measuring the full kinematics of the 2β events
- Individual channels available for background measurement
- Signal over background ratio optimisations for decay to the ground state and the excited states
- ► $2\nu 2\beta$ half-life measurement under approval, compatible with the current published value
- Limit on $0\nu 2\beta$ half-life under approval
- First limit on the decay to excited states with NEMO-3 to be approved

Backup

$0\nu2\beta$ Search

▶ 9.4 g of 96 Zr - Q $_{\beta\beta}$ = 3.35 MeV

- ROI optimised on MC : 1 event observed
- NEMO-3 unique : no event observed above 3 MeV
- ► After approval, would be the best limit on 0ν process of 96 Zr Current best limit : $T_{1/2}^{0\nu} > 9.2 \ 10^{21}$ yr (Nuclear Physics A, 847, 168-179, 2010)

Natural radioactivity decay chains

LAL, UCL

YSF Moriond EW 15 - 96 Mo in NEMO-3

NEMO Experimental Techniques

- Low-background detectors in deep underground laboratories
- Passive $\beta\beta$ enriched source foil in the center
- Magnetised tracking device to identify the two electrons
- Segmented calorimeter to measure the (individual and total) energies and the time of flight of the two e⁻ (with the tracker)
- \blacktriangleright Shielded against neutrons and γ from the laboratory

NEMO-3 : the Neutrino Ettore Majorana Observatory

- NEMO-3 results for the $2\nu 2\beta$ process half-life
- Each of them are the current world's best

isotope	mass [g]	Q_{etaeta} [keV]	${\sf T}_{1/2}^{2 u}$ [10 19 y]
^{48}Ca	6.99	4272	4.4 ± 0.6
^{82}Se	932	2996	9.6 ± 1.0
96 Zr	9.43	3350	2.35 ± 0.21
^{100}Mo	6914	3034	0.72 ± 0.05
^{116}Cd	405	2814	2.8 ± 0.3
130 Te	454	2528	70 ± 14
150 Nd	37	3371	0.9 ± 0.07

 Analyses still in progress on most of the isotopes (⁸²Se, ⁴⁸Ca, ⁹⁶Zr, ...)

NEMO-3 : Description

- NEMO-3 ran from 2003 to 2011
- Two phases :
 - Phase 1 : high radon background phase
 - Phase 2 : low radon phase (reduction factor of 6)

NEMO-3 : the Neutrino Ettore Majorana Observatory

- Several double- β isotopes studied (\sim 9kg)
- Background checked on copper and natural tellurium sources

NEMO-3 $2\nu 2\beta$ Measurement

- ▶ 6.9 kg of ¹⁰⁰Mo
- ▶ ~700 000 $2\nu 2\beta$ events collected
- Efficiency $\mathcal{E}_{2\nu} = 4.3 \%$
- Signal to background ratio S/B = 76
- Preliminary half-life :

 $\mathcal{T}_{1/2}^{2
u} = 7.16 \pm 0.01 \; (ext{stat}) \pm 0.54 \; (ext{syst}) \; 10^{18} \; ext{y}$

compatible with previously published [Phys. Rev. Lett. 95, 182302 (2005)]

$0\nu 2\beta$ Results

Phys. Rev. D 89, 111101, 2014

► in [2.8 – 3.2] MeV : 15 events obs., 18.0 ± 0.6 expect. No event excess $T_{1/2}^{0\nu}(^{100}\text{Mo}) > 1.1 \times 10^{24} \text{ yr (90 \% C.L.)}$ $\langle m_{\beta\beta} \rangle < 0.33 - 0.87 \text{ eV}$ Guillaume EURIN LAL, UCL YSF Moriond EW 15 - ⁹⁶ Mo in NEMO-3 2015

2015/03/16 9 / 9

NEMO-3 $0\nu 2\beta$ Results

Current last results on ⁸²Se

in [2.6 – 3.2] MeV : 14 events obs., 11.1 \pm 1.3 expect. $\mathcal{T}_{1/2}^{0\nu}(^{82}\text{Se}) > 3.2 \ 10^{23} \text{ yr } \& \langle m_{\beta\beta} \rangle \quad < 0.85 - 2.08 \text{ eV}$