

Moriond/EW: 50th Rencontres de Moriond 14-21 March 2015, La Thuile

The Top Quark

- The **heaviest particle** discovered
 - Strong top Yukawa coupling
- Plays key role in many important physics processes
 - Flavor physics, Electro-weak processes
- Speculated to play a special role in a number of **Beyond the Standard** Model theories

August 2014

|V_{tb}| : **1.6% unc.**

CMS Preliminary

1.010 + 0.160 (exp) + 0.030 (th)

CMS tW, 7 TeV, 4.9 fb⁻¹, PRL110 (2013) 0

Γ.: **9% unc.**

What was learned about the **Top Quark**

- Every topic deserves a dedicated long presentation
 - **CMS** Public Page:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
 - **ATLAS** Public Page:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

QCD scale choice: 0.3 -> 0.0

arXiv:1406.5375 Eur.Phys.J. C74 (2014) 3109

🖇 Inclusive top-pair production: Summary 🎽

- Summary of LHC (and Tevatron)measurements of top-pair production cross sections
 - Excellent progress both on the theory and experiment sides!

Single-top-quark production: Summary

Different processes sensitive to different new physics mechanisms

Moriond/EW: 50th Rencontres de Moriond

Differential: introduction

- Differential cross sections test of QCD calculations
 - Compare generators and NLO QCD predictions to unfolded data distributions

- Differential cross sections test QCD calculations
 - compare different generators, PDFs and (N)NLO QCD predictions to unfolded data distributions

Study kinematics of top pair, top quark p_T

Differential: boosted

- Top p_T measured for the first time using boosted jet reconstruction algorithms up to TeV range
 - Fiducial phase-space particle level
 - Full phase-space parton level

MCs are above data, increasing with p_T

 Better description by **Powheg+Herwig** at parton level

[J.Stupak's talk @ Thursday]

Differential: single top t-channel

19.7 fb⁻¹ (8 TeV)

∙ Data ∎t-channel

s+tW

QCD

₩+light W+heavy Z+Jets.VV

CMS Preliminarv

u+iet:

Events / 0.

10000

8000

6000

4000

- Differential cross sections as functions of top p_T and rapidity
 - Comparison with MC using different modeling for b-quarks, showering/hadronization

Moriond/EW: 50th Rencontres de Moriond

Moriond/EW: 50th Rencontres de Moriond

Top-pair + X, X=photon

- min 0000000 **ATLAS@7 TeV: observation + fiducial cross** Extract fiducial cross ATLAS Muon channel Data $\sqrt{s}=7 \text{ TeV}, \ L \text{ dt} = 4.59 \text{ fb}^{-1}$ Signal background Hadron fakes Total uncertainty from fit 10⁻¹ 12 14 2 4 6 8 10 16 18 20 p_iso [GeV] arXiv:1502.00586 [hep-ex] ATLAS Data $\sqrt{s}=7 \text{ TeV}, \int L dt = 4.59 \text{ fb}^{-1}$ Theoretical uncertainty 76 $^{+16}_{-15}$ (stat.) $^{+22}_{-17}$ (syst.) ± 1 (lumi.) fb **Electron channel** 55_{-9}^{+10} (stat.) $_{+1}^{+14}$ (syst.) \pm 1 (lumi.) fb Muon channel $63 \pm 8 \text{ (stat.)}^{+17}_{-13} \text{ (syst.)} \pm 1 \text{ (lumi.) fb}$ Combined Theoretical prediction $48 \pm 10 \text{ fb}$ 300 200 0 50 100 150 250 -100 -50 $\sigma_{t\bar{t}v} \times BR$ [fb]
- Sensitive to top charge and to top-photon
- to the photon track isolation distribution
- Background determination
 - Data-driven where possible
 - Single-top, diboson estimated with MC

CMS@8TeV: cross section

- Muon channel
- $E_{T}(\gamma) > 20 \text{ GeV}, \Delta R(\gamma, b) > 0.1$
- $\sigma(tt \gamma) / \sigma(tt) =$
 - $(1.07 \pm 0.07(\text{stat}) \pm 0.27(\text{syst})) \times 10^{-2}$
 - $=> \sigma$ (tt γ) = 2.4 ± 0.2(stat) ± 0.6(syst) pb
 - SM: 1.8±0.5pb (Melnikov et al)

CMS-PAS-TOP-13-011

000000000 Multi-top production g 0000000 More data, higher $\sqrt{s} =>$ rare processes are becoming accessible σ (tttt)_{SM} ≈ 1 fb @ 8 TeV Generated with MadGraph Many BSM models predict enhancement of this cross section (SUSY squark/gluino decays) 19.6 fb⁻¹ (8TeV) CMS Nents 10⁵ tt + II/gg No significant excess 1 iso. μ , $N_{jets} > 7$, $N_{btags} \ge 2$ tī + cc̄/bb̄ observed over SM $H_T \ge 400 \text{ GeV}, E_{\tau}^{miss} \ge 30 \text{ GeV}$ expectations other Scale uncertainty 10^{4} Cross section limit: SM tttt (× 100) 10^{3} Data Observed: $32 \text{ fb} (25 \times \text{SM})$ 10² Expected: 32 ± 17 fb Will be of interest for Run 2 10 4-top production cross section ~**9--15 times larger** CERN-PH-EP-2014-222 arXiv:1409.7339 -0.2 -0.3 -0.1 0.2 0.3 0 0.1 BDT_{event} discriminant JHEP 11 (2014) 154

What We still Need to Learn

Rich and mature top physics program @ Run 1

- Many things to learn from a bigger data sample!
 - A factor of 2 top-pair events in 2015
 - Expect 10 fb⁻¹ @ 13 TeV [M.Lamont's talk @ Tuesday]

Top Properties

- Many properties are still unknown (to the desired precision)
 - Couplings to photon, Z
 - Coupling to Higgs [S.Majewski's talk @ Thursday)
 - and maybe some other new heavy particles?
 - Charge asymmetry in top pair production

FCNC

- many channels to test
- Precise cross section measurements
 - Differential measurements to test pQCD
 - PDF studies
- Thank...

Top-quark pair production: 2011

 First Summary of LHC and Tevatron measurements of top-pair production cross sections

LHC + ATLAS + CMS + Theory Community

Top-quark pair production: 2015

 Summary of LHC and Tevatron measurements of top-pair production cross sections

Moriond/EW: 50th Rencontres de Moriond

- Detectors
- ATLAS + CMS Charge asymmetry
- ATLAS tt+HF
- FCNC prospects
- Various summary plots

Subdetectors and identified objects:

- Trackers: electrons, muons, jets, taus, photons
- Calorimeters: electrons, muons, jets, taus, photons
- Muon Detectors: muons

Moriond/EW: 50th Rencontres de Moriond

...Outermost Layer

Innermost Layer...

Large Hadron Collider

- p-p collider
- Center of mass energy
 - √s = 7 TeV @ 2010-11
 - √s = 8 TeV @ 2012
 - √s = 13-14 TeV @ 2015+
- Multi-purpose experiments:
 ATLAS and CMS

Length = 21.6m, Diameter = 15m

Subdetectors and identified objects:

- Trackers: electrons, muons, jets, taus, photons
- Calorimeters: electrons, muons, jets, taus, photons

28

Muon Detectors: muons

- Constrain models of HF quark production at top quark mass scale
 - Measure ratio tt+HF/tt+jets
- √s = 7 TeV , dilepton decay channel with at least one additional jet
- 2-D Template fit: displaced vertex mass and jet p_T
 - using different b-tag operating points
- Largest systematics HF tagging efficiency and fragmentation modeling
- SM predictions
 - □ ALPGEN+HERWIG = 3.4%
 - \square POWHEG+HERWIG = 5.2%

Phys.Rev. D89 (2014) 072012 CERN-PH-EP-2013-030

arXiv:1304.6386 [hep-ex]

 $R_{\rm HF} = [6.2 \pm 1.1 \text{ (stat.)} \pm 1.8 \text{ (syst.)}]\%$

• Expect further (significant!) improvements at Run 2 and beyond

A few LHC summary plots

- Charge asymmetry
- Single top-quark production
- Top-quark pair production
- Results are summarized at
 - CMS
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsTOP</u>
 - □ ATLAS
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>TopPublicResults</u>
 - □ LHC WG
 - <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/</u> <u>TopLHCWG</u>

- Summary of the charge asymmetry measurements on ATLAS and CMS showing both the ttbar-based and lepton-based asymmetry measurements
 - The uncertainty on the theory predictions is shown but is very small

🕱 Single top-quark: t-channel @ 8 TeV 🎉

 Summary of ATLAS and CMS measurements of the single top production cross section in t-chanel @ 8TeV

Top-quark pair production @ 7 TeV 🎽

- Summary of ATLAS and CMS measurements of topquark-pair production @ 7 TeV
 - The theory band represents uncertainties due to renormalisation and factorisation scale, parton density functions and the strong coupling

Top-quark pair production @ 8 TeV 🎏

Summary of ATLAS and CMS measurements of topquark-pair production @ 8 TeV

 The theory band represents uncertainties due to renormalisation and factorisation scale, parton density functions and the strong coupling

Top-quark pair production @ 8 TeV 🎽

Summary of ATLAS and CMS measurements of topquark-pair production @ 8 TeV

 The theory band represents uncertainties due to renormalisation and factorisation scale, parton density functions and the strong coupling