Top quarks in ATLAS: bridging measurements and searches

Stephanie Majewski, University of Oregon

on behalf of the ATLAS Collaboration

50th Rencontres de Moríond EW, March 14-21, 2015

Introduction

- The interplay between top quark measurements and searches is essential to fully explore avenues for new physics
 - "Classic" SM top cross-section measurements have played a key role to understanding tt backgrounds
 - 2. The top Yukawa coupling can be measured at tree-level in ttH → important for understanding EW symmetry breaking & sensitive to new physics
 - 3. Strong motivation (*naturalness*) for top partner searches: vector-like quarks, SUSY stop (including "stealth" stop)

S. Majewski, University of Oregon

3

Measurements \rightarrow Searches

Moriond EW 2015

Rapidity Gap in tt events

 Study the fraction of dilepton tt events that do not contain an additional central rapidity jet

Rapidity Gap in tt events

 Study the fraction of dilepton tt events that do not contain an additional central rapidity jet

S. Majewski, University of Oregon

 Jet multiplicity dependence JHEP 01 (2015) 020

tt differential cross sections

Rapidity Gap in tt events

 Study the fraction of dilepton tt events that do not contain an additional central rapidity jet

S. Majewski, University of Oregon

tt differential cross sections

- Jet multiplicity dependence JHEP 01 (2015) 020
- Dependence on p_T(tt) Phys. Rev. D90 (2014) 072004

Rapidity Gap in tt events

 Study the fraction of dilepton tt events that do not contain an additional central rapidity jet

Jet multiplicity dependence IHEP 01 (2015) 020

Dependence on p_T(tt) Phys. Rev. D90 (2014) 072004

tt differential cross sections

Boosted tt differential cross section

ATLAS-CONF-2014-057

lepton+jets tt events,
 unfolded to particle &
 parton level

S. Majewski, University of Oregon

Boosted tt differential cross section

tt resonance search New

ATLAS-CONF-2014-057

 lepton+jets tt events, unfolded to particle & parton level

- combined boosted+resolved ($\sigma \times \mathscr{B}$) < 0.03 pb for 3 TeV Z'
- excludes narrow leptophobic
 Z' < 1.8 TeV
- Moriond EW 2015 see also talk by J. Stupak

8

Top Yukawa Coupling

- SM Higgs predicted to have a large Yukawa coupling to tops
 - can be probed through Higgs production in association with top quark(s): tH and ttH
- Three channels explored:

 $\begin{array}{c|c} H \rightarrow b\bar{b} & & \\ t\bar{t} \rightarrow \ell + \text{jets, dilepton} \\ & \\ \text{HIGG-2013-27,} \\ \text{submitted to EPJC} \end{array} \end{array} \begin{array}{c} H \rightarrow \gamma \gamma \\ t\bar{t} \rightarrow \ell + \text{jets, dilepton}, \\ & \\ \text{all-had} \\ & \\ \text{Physics Letters B 740 (2015) 222-242} \end{array} \end{array}$ Multi-lepton final states (including τ s) $(\text{including } \tau$ s) $(\text{including } \tau)$ s) $(\text{including } \tau)$ s $(\text{including } \tau)$

$$\sigma_{t\bar{t}H}(\sqrt{s} = 8 \text{ TeV}) = 129.3^{+4.9}_{-12.0} \text{ (scale)} \pm 10.5 \text{ (PDF) fb}$$

S. Majewski, University of Oregon

Top Yukawa Coupling

m_{γγ} mass spectrum provides discrimination
 1.42 GeV (1.56 GeV) resolution for 7 TeV
 (8 TeV) data

 $t\bar{t} \rightarrow \ell + jets, dilepton,$ all-had

 $H \to \gamma \gamma$

• Best fit value (m_H = 125.4 GeV): $\mu_{t\bar{t}H} = 1.3^{+2.5}_{-1.7} (\text{stat})^{+0.8}_{-0.4} (\text{syst})$

■ Five different multi-lepton final states (2ℓ are same-sign):

Higgs decay mode fraction

Category	WW	au au	ZZ	other
$2\ell0 au_{ m had}$	80%	15%	3%	2%
3l	74%	15%	7%	4%
$2\ell 1 au_{ m had}$	35%	62%	2%	1%
4ℓ	69%	14%	14%	4%
$1\ell 2 au_{ m had}$	4%	93%	0%	3%

 Main backgrounds: ttZ, ttW (all categories) diboson (3 l) tt+jets, Z+jets (*e* charge mis-id) tt with non-prompt leptons
 S. Majewski, University of Oregon
 Moriond EW 2015

Five different multi-lepton final states (2ℓ are same-sign): Higgs decay mode fraction

Category	WW	ττ	ZZ	other
$2\ell 0 au_{ m had}$	80%	15%	3%	2%
3ℓ	74%	15%	7%	4%
$2\ell 1 au_{ m had}$	35%	62%	2%	1%
4ℓ	69%	14%	14%	4%
$1\ell 2 au_{ m had}$	4%	93%	0%	3%

Main backgrounds: ttZ, ttW (all categories) diboson (3ℓ) tt+jets, Z+jets (*e* charge mis-id) tt with non-prompt leptons S. Majewski, University of Oregon

S. Majewski, University of Oregon

17

- color-triplet spin-1/2 fermions; L & R components transform the same way under weak isospin
 - flavor-changing neutral current decays allowed: $T \rightarrow W b$, Z t, H t

Four search channels:

S. Majewski, University of Oregon

- color-triplet spin-1/2 fermions; L & R components transform the same way under weak isospin
 - flavor-changing neutral current decays allowed: $T \rightarrow W b$, Z t, H t

- color-triplet spin-1/2 fermions; L & R components transform the same way under weak isospin
 - flavor-changing neutral current decays allowed: $T \rightarrow W b$, Z t, H t

See the full set of summary plots: <u>ExoticsPublicResults</u>

Direct Stop Searches

As of ICHEP 2014, direct stop searches provided impressive phase space coverage

But detailed $t\overline{t}$ measurements were needed to investigate the region $m_{\tilde{t}} \sim m_t$

Precise tt Cross Sections

- 7 TeV and 8 TeV $t\bar{t}$ cross sections measured in $e^{\pm}\mu^{\mp}$ events
 - Reduced systematic uncertainties due to simultaneous fit and extraction of b-tagging efficiency
 EPJC 74 (2014) 3109

 $\sigma_{t\bar{t}} = 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \,\mathrm{pb} \,(\sqrt{s} = 7 \,\mathrm{TeV})$

S. Majewski, University of Oregon

Precise tt Cross Sections

- 7 TeV and 8 TeV $t\bar{t}$ cross sections measured in $e^{\pm}\mu^{\mp}$ events
 - Reduced systematic uncertainties due to simultaneous fit and extraction of b-tagging efficiency
 EPJC 74 (2014) 3109

S. Majewski, University of Oregon

Precise tt Cross Sections

- 7 TeV and 8 TeV $t\bar{t}$ cross sections measured in $e^{\pm}\mu^{\mp}$ events
 - Reduced systematic uncertainties due to simultaneous fit and extraction of b-tagging efficiency
 EPJC 74 (2014) 3109
 - 95% CL limit on signal strength μ ATLAS Also constrains $s = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ "stealth" stop pair ∖s = 8 TeV, 20.3 fb⁻¹ 3.5 Expected limit ±1 σ_{exp} Observed limit ±1 σ_{theol}^{SUS} production for $m_{\tilde{t}} = 175 \,\text{GeV}$, $\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0, m(\widetilde{\chi}_1^0)=1 \text{ GeV}$ $\sigma_{\tilde{t}\tilde{t}^*}$ (8 TeV) = 40 pb 1.5 includes uncertainty due to results sensitive to top ±1 GeV variation in m_{top} polarization in stop decays 0.5 200 230 180 190 210 170 220 $m_{\tilde{t}}$ [GeV]

tt Spin Correlation

- Top—antitop spin correlation
 extracted from dilepton tt
 t
 events
 using ∆Φ(ℓ⁺,ℓ⁻)
- Analysis sensitive to changes in yield and shape \rightarrow can detect admixture of $t\bar{t} + \tilde{t}\tilde{t}^*$

Φ

arxiv:1412.4742, accepted by PRL

tt Spin Correlation

- Top—antitop spin correlation extracted from dilepton *t*t
 events using ΔΦ(ℓ⁺,ℓ⁻)
- Analysis sensitive to changes in yield and shape \rightarrow can detect admixture of $t\bar{t} + \tilde{t}\tilde{t}^*$

Process	Yield
$t\bar{t}$	$54000 \begin{array}{c} + & 3400 \\ - & 3600 \end{array}$
Z/γ^* +jets	2800 ± 300
tV (single top)	2600 ± 180
$t\bar{t}V$	80 ± 11
WW, WZ, ZZ	180 ± 65
Fake leptons	780 ± 780
Total non- $t\bar{t}$	6400 ± 860
Expected	$60000 \stackrel{+}{_{-}} \stackrel{3500}{_{-}} \stackrel{-}{_{3700}}$
Observed	60424
$ ilde{t}_1 ar{ ilde{t}}_1$	7100 ± 1100
$(m_{{{ ilde t}_1}}=180~{ m GeV},m_{{{ ilde \chi}_1^0}}=1~{ m GeV})$	

S. Majewski, University of Oregon

Morion

tt Spin Correlation

- Top—antitop spin correlation extracted from dilepton *tt* events using ∆Φ(ℓ⁺,ℓ⁻)
- Analysis sensitive to changes in yield and shape \rightarrow can detect admixture of $t\bar{t} + \tilde{t}\tilde{t}^*$

Process	Yield
$\overline{t\bar{t}}$	$54000 \stackrel{+}{_{-}3600} \stackrel{3400}{_{-}3600}$
Z/γ^* +jets	2800 ± 300
tV (single top)	2600 ± 180
$t \bar{t} V$	80 ± 11
WW, WZ, ZZ	180 ± 65
Fake leptons	780 ± 780
Total non- $t\bar{t}$	6400 ± 860
Expected	$60000 \stackrel{+}{_{-}} \stackrel{3500}{_{3700}}$
Observed	60424
$ ilde{t}_1 ar{t}_1$	7100 ± 1100
$(m_{\tilde{t}_1} = 180 \text{ GeV}, m_{\tilde{\chi}^0_1} = 1 \text{ GeV})$	

S. Majewski, University of Oregon

Morion

Direct Stop Searches

Stealth stop region $(m_{\tilde{t}} \sim m_t)$ nearly closed by precision tt measurements!

see also talk by G. Polesello

S. Majewski, University of Oregon

top

Summary & Outlook

- On the 20th anniversary of its discovery, the massive top quark plays a <u>central role</u> in searching for new physics at the LHC
- Measurements have improved our
 background estimates and increased
 our sensitivity to new physics in
 challenging regions of phase space
- Looking forward to continued synergy between measurements and searches in Run 2!

Additional Material

$$\stackrel{\text{g}}{\underset{g}{\overset{H}}} \stackrel{\text{h}}{\underset{i}{\overset{H}}} Top Yukawa Coupling$$

$$\stackrel{H \to b\bar{b}}{\underbrace{t\bar{t}} \to \ell + \text{jets, dilepton}}$$

impact of reweighting Powheg+Pythia based on p_T(tt):

S. Majewski, University of Oregon

$$\stackrel{\text{g}}{\underset{t}{\overset{H}{\leftarrow}}} \stackrel{\text{t}}{\underset{t}{\overset{H}{\leftarrow}}} Top Yukawa Coupling$$

$$\stackrel{H \to b\bar{b}}{\underbrace{\bar{t}}{\overset{H}{\leftarrow}} + \text{jets, dilepton}}$$

full set of signal-rich and background-rich regions:

S. Majewski, University of Oregon

Table 2

Expected numbers of $H \rightarrow \gamma \gamma$ events (N_H) from an SM Higgs boson with $m_H = 125.4$ GeV after the event selection. These combined yields are normalized to 4.5 fb⁻¹ for the 7 TeV data and to 20.3 fb⁻¹ for the 8 TeV data, and are listed in the table along with the percent contribution of each Higgs boson production process with respect to the sum of all Higgs boson production processes. The numbers of fitted continuum background events (N_B) for the 7 TeV and 8 TeV data are also shown, where N_B is the integral of the continuum background in the $m_{\gamma\gamma}$ range 120–130 GeV, which is determined by an unbinned signal-plus-background fit to all categories with one common scale factor for the $H \rightarrow \gamma\gamma$ normalization. The uncertainty on N_B is the statistical uncertainty calculated from $\delta N_B = \delta N_{tot} N_B/N_{tot}$, where N_{tot} is the total number of background events in the full $m_{\gamma\gamma}$ range 105–160 GeV estimated from an unbinned signal-plus-background likelihood fit, and δN denotes the Poisson uncertainty on N.

Category	N _H	ggF	VBF	WH	ZH	tτ̄Η	tHqb	WtH	N _B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5\substack{+0.5 \\ -0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9\substack{+0.6\\-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

5 candidate events observed in $120 < m_{\gamma\gamma} < 130$ GeV, consistent with 1.3 expected from ttH + 4.6 from bkg

Moriond EW 2015

 $4.6^{+1.3}$

Expected and observed yields in each channel

Category	q mis-id	Non-prompt	tĪW	tīZ	Diboson	Expected Bkg.	$t\bar{t}H (\mu = 1)$	Observed
$ee + \ge 5j$	1.1 ± 0.5	2.3 ± 1.2	1.4 ± 0.4	0.98 ± 0.32	0.47 ± 0.42	6.5 ± 2.0	0.73 ± 0.11	10
$e\mu + \ge 5j$	0.85 ± 0.35	6.7 ± 2.4	4.8 ± 1.4	2.1 ± 0.7	0.38 ± 0.32	15 ± 4	2.13 ± 0.31	22
$\mu\mu + \ge 5j$	_	2.9 ± 1.4	3.8 ± 1.1	0.95 ± 0.31	0.69 ± 0.63	8.6 ± 2.5	1.41 ± 0.21	11
ee + 4j	1.8 ± 0.7	3.4 ± 1.7	2.0 ± 0.4	0.75 ± 0.25	0.74 ± 0.58	9.1 ± 2.3	0.44 ± 0.06	9
$e\mu + 4j$	1.4 ± 0.6	12 ± 4	6.2 ± 0.9	1.5 ± 0.2	1.9 ± 1.2	24.0 ± 4.5	1.16 ± 0.14	26
$\mu\mu + 4j$	_	6.3 ± 2.6	4.7 ± 0.9	0.80 ± 0.26	0.53 ± 0.30	12.7 ± 3.0	0.74 ± 0.10	20
3ℓ	_	3.2 ± 0.7	2.3 ± 0.9	3.9 ± 0.9	0.86 ± 0.59	11.4 ± 3.1	2.34 ± 0.32	18
$2\ell 1 au_{ m had}$	_	$0.4^{+0.6}_{-0.4}$	0.38 ± 0.15	0.37 ± 0.09	0.12 ± 0.15	1.4 ± 0.6	0.47 ± 0.02	1
$1\ell 2 au_{ m had}$	_	15 ± 5	0.17 ± 0.07	0.37 ± 0.10	0.41 ± 0.42	16 ± 6	0.68 ± 0.07	10
4ℓ Z-enr.	_	$\lesssim 10^{-3}$	$\lesssim 3 \times 10^{-3}$	0.43 ± 0.13	0.05 ± 0.02	0.55 ± 0.17	0.17 ± 0.01	1
4ℓ Z-dep.	_	$\lesssim 10^{-4}$	$\lesssim 10^{-3}$	0.002 ± 0.002	$\lesssim 2 \times 10^{-5}$	0.007 ± 0.005	0.03 ± 0.00	0

Source	Δ	μ
$2\ell 0\tau_{had}$ non-prompt muon transfer factor	+0.38	-0.35
<i>ttW</i> acceptance	+0.26	-0.21
$t\bar{t}H$ inclusive cross section	+0.28	-0.15
Jet energy scale	+0.24	-0.18
$2\ell 0\tau_{had}$ non-prompt electron transfer factor	+0.26	-0.16
$t\bar{t}H$ acceptance	+0.22	-0.15
$t\bar{t}Z$ inclusive cross section	+0.19	-0.17
$t\bar{t}W$ inclusive cross section	+0.18	-0.15
Muon isolation efficiency	+0.19	-0.14
Luminosity	+0.18	-0.14

Vector-Like Quarks $T\bar{T} \rightarrow Ht + X$

Common preselection:

1 e or 1 μ , \geq 4 jets $E_T^{miss} > 20 \text{ GeV}$ $E_{T}^{miss} + m_{T}^{W} > 60 \text{ GeV}$

	5 j, 2 b	5 j, 3 b	5 j, ≥4 b	≥6 j, 2 b		$\geq 6 \text{ j, } 3 \text{ b}$ low $M_{bb}^{\min \Delta R}$	$\geq 6 \text{ j, } 3 \text{ b}$ high $M_{bb}^{\min \Delta R}$	$\geq 6 \text{ j}, \geq 4 \text{ b}$ low $M_{bb}^{\min \Delta R}$	$\geq 6 \text{ j}, \geq 4 \text{ b}$ high $M_{bb}^{\min \Delta R}$
$T\bar{T}$ ($m_T = 600 \text{ GeV}$)	-	-	-		$T\bar{T} (m_T = 600 \text{ GeV})$				
Singlet	52.5 ± 4.2	19.0 ± 2.3	5.8 ± 1.2	123.3 ± 6.2	Singlet	29.5 ± 2.0	44.0 ± 3.6	17.7 ± 1.9	24.1 ± 3.7
Doublet	25.8 ± 2.0	14.0 ± 1.4	5.0 ± 1.0	154.1 ± 6.4	Doublet	50.2 ± 2.5	68.9 ± 4.1	41.0 ± 3.9	53.8 ± 7.3
$\sigma \sigma \rightarrow t \bar{t} t \bar{t} \ (m_{\sigma} = 800 \text{ GeV})$	2.0 ± 0.3	1.4 ± 0.3	0.3 ± 0.1	64.8 ± 4.6	$\sigma \sigma \rightarrow t \bar{t} t \bar{t} \ (m_{\sigma} = 800 \text{ GeV})$	22.5 ± 1.6	50.7 ± 3.5	9.3 ± 1.0	16.2 ± 2.6
$t\bar{t}t\bar{t}$ +X (Tier (1,1), m_{KK} = 800 GeV)	1.0 ± 0.4	0.6 ± 0.3	0.06 ± 0.05	180 ± 29	$t\bar{t}t\bar{t}$ +X (Tier (1,1), m_{KK} = 800 GeV)	33.6 ± 2.8	132.5 ± 5.9	27.7 ± 2.3	75 ± 13
$t\bar{t}$ +light jets	32400 ± 5300	2930 ± 520	48 ± 12	16200 ± 4000	$t\bar{t}$ +light jets	1280 ± 350	440 ± 110	38 ± 14	9.3 ± 3.9
$t\bar{t} + c\bar{c}$	3800 ± 2100	730 ± 410	42 ± 24	3300 ± 1800	$t\bar{t} + c\bar{c}$	550 ± 320	220 ± 120	53 ± 31	14.7 ± 9.0
$t\bar{t} + b\bar{b}$	1530 ± 800	800 ± 420	108 ± 58	1300 ± 700	$t\bar{t} + b\bar{b}$	620 ± 330	250 ± 140	178 ± 95	46 ± 25
$t\bar{t}V$	140 ± 46	24.9 ± 8.1	2.9 ± 1.0	172 ± 56	$t\bar{t}V$	28.7 ± 9.2	12.5 ± 4.2	6.2 ± 2.0	1.5 ± 0.5
tĪH	39.2 ± 1.7	20.8 ± 1.6	5.6 ± 0.7	60.2 ± 4.5	tīH	24.9 ± 1.9	11.6 ± 1.3	10.6 ± 1.2	4.1 ± 0.6
W+jets	1600 ± 1000	111 ± 71	5.0 ± 3.4	770 ± 530	W+jets	68 ± 46	16 ± 10	6.6 ± 4.8	0.6 ± 0.4
Z+jets	360 ± 120	24.8 ± 8.4	1.2 ± 0.5	185 ± 67	Z+jets	15.7 ± 6.3	3.3 ± 1.3	1.6 ± 0.6	0.3 ± 0.1
Single top	1630 ± 320	169 ± 36	7.0 ± 1.0	730 ± 200	Single top	74 ± 22	32 ± 12	7.8 ± 2.2	2.1 ± 1.3
Diboson	85 ± 27	7.3 ± 2.5	0.4 ± 0.2	45 ± 15	Diboson	4.2 ± 1.6	1.2 ± 0.5	0.4 ± 0.1	0.2 ± 0.1
Multijet	133 ± 48	33 ± 12	6.9 ± 2.6	56 ± 20	Multijet	1.9 ± 0.8	4.8 ± 2.1	< 0.01	2.8 ± 1.0
Total background	41700 ± 6400	4840 ± 900	228 ± 69	22800 ± 5200	Total background	2670 ± 680	990 ± 260	300 ± 110	81 ± 30
Data	43319	5309	244	23001	Data	3015	1085	362	84

S. Majewski, University of Oregon

Moriond EW 2015

$T\bar{T} \rightarrow Wb\!+\!\mathrm{X}$

Selection	Requirements		Loose selection	Tight selection
Preselection	One electron or muon $E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T} > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b\text{-tagged jets}$	$T\overline{T}(m_T = 600 \text{ GeV})$ Chiral fourth-generation Vector-like singlet	115 ± 10 60.3 ± 5.1	58.9 ± 5.9 24.5 ± 2.3
Loose selection	Preselection $\geq 1 W_{had} \text{ candidate (type I or type II)}$ $H_{T} > 800 \text{ GeV}$ $p_{T}(b_{1}) > 160 \text{ GeV}, p_{T}(b_{2}) > 110 \text{ GeV (type I) or } p_{T}(b_{2}) > 80 \text{ GeV (type II)}$ $\Delta R(\ell, \nu) < 0.8 \text{ (type I) or } \Delta R(\ell, \nu) < 1.2 \text{ (type II)}$	$t\bar{t}$ $t\bar{t}V$ W+jets Z+jets	390 ± 110 6.5 ± 2.5 38 ± 19 1.5 ± 1.2	$10.7 \pm 4.3 \\ 0.4 \pm 0.2 \\ 11.4 \pm 6.2 \\ 0.4 \pm 0.4$
Tight selection	Loose selection $\min(\Delta R(\ell, b_{1,2})) > 1.4, \min(\Delta R(W_{had}, b_{1,2})) > 1.4$ $\Delta R(b_1, b_2) > 1.0$ (type I) or $\Delta R(b_1, b_2) > 0.8$ (type II) $\Delta m < 250$ GeV (type I)	Single top Diboson Multijet	36 ± 17 5.6 ± 1.4 0.3 ± 1.6	2.2 ± 1.5 1.5 ± 0.6 0.8 ± 0.7
		Total background	480 ± 120	27.5 ± 8.6
		Data	478	34

Same-sign dilepton/trilepton

multilepton analysis

S. Majewski, University of Oregon

Search for 4-top production

Same channels as vector-like quark searches: Ht+X, ss dilepton / trilepton
 generation / trilepton

