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The renormalisation of the chargino and neutralino sector of the NMSSM as implemented in
SloopS is presented together with a few numerical examples.

1 Introduction

The Standard Model (SM) of particle physics is a successful theory that predicts with a very
high precision most of measured observables. Even if no significant deviations from the SM have
been observed so far, several theoretical arguments as well as cosmological and astrophysics
observations indicate that it cannot be complete. In particular, the hierarchy problem, dark
matter as well as neutrino masses cannot be explained in this model. This motivates the need
to go beyond the Standard Model (BSM). One of the best motivated and studied theory is
supersymmetry (SUSY). Its minimal incarnation, the Minimal Supersymmetric Standard Model
(MSSM) presents some problems such as the so-called µ problem or the difficulty to get a 125
GeV Higgs boson without fine-tuning radiative corrections. Adding a new singlet Higgs chiral
superfield to the MSSM, called then the Next to Minimal Supersymmetric extension of the SM
(NMSSM), will solve these problems 1.

1.1 The NMSSM

In the MSSM, two Higgs superfields Ĥu and Ĥd, which are weak doublets are necessary to
generate quarks and gauge-boson masses via the usual Higgs mechanism and also to avoid
gauge anomaly. These two superfields are linked in the superpotential :

WMSSM
Higgs = µĤu.Ĥd, (1)

The µ parameter has the dimension of a mass and is a free parameter. In this sense, its mass scale
can vary a priori between 0 and the Planck mass. However, µ is related to other observables,
such as the Z-boson mass,

M2
Z ' −2µ2 + 2

m2
Hd
− t2βm2

Hu

tβ − 1
, (2)



where mHu and mHd are the soft mass terms for Ĥu and Ĥd, and tβ is defined via their vacuum
expectation values (vev), tβ = vu

vd
. Therefore, µ has to be of the order of the electroweak or SUSY

breaking scale, even if, in the MSSM, it has no reason to be so. This is called the µ-problem.

In the NMSSM, the addition of a new gauge singlet Higgs superfield Ŝ will modify the Higgs
superpotential, Eq. 1, as,

WNMSSM
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κ

3
Ŝ3, (3)

where λ and κ are now dimensionless couplings. The scalar (and neutral) part of Ŝ gets a vev
s, generated by soft mass terms, of the order of the SUSY breaking scale. This will generate a
new effective µ term, µeff = λs, at the desired scale, thus solving the µ-problem.

Another challenge for the MSSM is the Higgs mass, the upper bound is given by :
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where mZ is the Z-boson mass, mt the top mass, m2
t̃

= mt̃1
mt̃2

the product of both stop masses,

Xt = At − µ
tβ

the off-diagonal term in the stop mass matrix and v2 = v2u + v2d . In Eq. 4, the

first term is the tree level mass term, whose value is bounded by the Z-boson mass. To get a
125 GeV Higgs boson, one then has to fine tune the second term, which is the dominant top
sector contribution to the radiative corrections of the Higgs mass. Consequently, the MSSM is
strongly constrained by the Higgs sector.

In the NMSSM, this is not the case anymore. Indeed, the modification of the Higgs super-
potential, Eq. 3, will add a new tree-level mass term to the upper bound shown in Eq. 4 :

m2
h,NMSSM = m2

h,MSSM + λ2v2 sin2(2β). (5)

With this new contribution, it is possible to reach already at tree-level a Higgs boson mass of
125 GeV thus relaxing the fine-tuning of radiative corrections. This feature renders the NMSSM
more natural than the MSSM.

The NMSSM features an extended Higgs sector with tree CP-even Higgs bosons that are
mixture of the two doublets and the singlet Higgs gauge eigenstates. The lightest or the second
lightest ones could correspond to the Higgs observed at the LHC. Indeed, if the lightest one is
dominantly singlet, all its couplings to other particles, except to the other Higgses, are suppressed
and it could escape detection. Moreover, the singlino, the fermionic content of the superfield
Ŝ, mixes with the higgsinos, bino and neutral wino to give five neutralinos rather than four
in the MSSM. The phenomenology of neutralinos, especially for Dark Matter searches, is then
broadened.

2 Renormalisation of charginos-neutralinos

Precise predictions for observables require to be able to compute radiative corrections, for this
the renormalisation of the model is required. We will describe here the renormalisation of the
chargino/neutralino sectors of the NMSSM.

The non standard fermionic particles of the NMSSM are the 2 charginos, combination of
charged winos and Higgsinos, and the 5 neutralinos, combinations of bino, wino, neutral higgsi-
nos and the pure NMSSM singlino :
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The mass matrix for the charginos (X) are the same as in the MSSM while the mass matrix
for neutralinos reads

Y =


M1 0 −MZsW cβ MZsW sβ 0
0 M2 MZcW cβ −MZcW sβ 0

−MZsW cβ MZcW cβ 0 −µ −λvu
MZsW sβ −MZcW sβ −µ 0 −λvd

0 0 −λvu −λvd 2κs

 , (7)

where M1 and M2 are the U(1) and SU(2) gaugino masses, λ the coupling between the three
Higgs superfields in the NMSSM, κ the trilinear coupling of the singlet Higgs superfield with
itself. There is also a dependence on s and tβ. All these parameters have to be renormalised
to be able to compute radiative corrections. We also recall that µ = λs, which means that we
need to extract the counterterms for only 2 of these 3 parameters.

The transition to mass eigenstates is realized with unitary matrices (U, V, and N),

χR = UψRc , χL = V ψLc , χ0 = Nψ0 . (8)

and the mass eigenstates read
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In the code SloopS, presented below, we choose to not renormalize the rotation matrices,
which then remain the same at one-loop order. Therefore only the shifts of the mass matrices
and wave functions are needed to specify the counterterms :

M0 =M + δM, (10)

χR,Li0
=

(
δij +

1

2
δZR,Lij

)
χR,Lj . (11)

For charginos, which are Dirac fermions, the left and right-handed parts are not shifted in the
same manner, Eq. 11. The renormalised self-energies are then given by (PL and PR are the left
and right projection operator) :
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1
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To fix the wave function and mass counterterms and then extract the counterterms for param-
eters, we use on-shell renormalisation conditions. Requiring that the masses of particles chosen
as input do not receive any one-loop corrections, is equivalent to imposing the following con-
dition on the renormalised self energies : ReΣ̂ii(m

2
χi) = 0. This gives the mass counterterms.

We also demand that the propagators of all charginos and neutralinos are properly normalised
with a residue equal to 1 at the pole mass, ReΣ̂′ii(m

2
χi) = 0. From this we extract the diagonal

wave function renormalisation constants. Finally, we require no mixing between fields when
on-shell, ReΣ̂ij(m

2
χi) = 0. This gives the non diagonal wave function renormalisation constants

and completes the renormalisation of the chargino-neutralino sector.

3 SloopS

SloopS is a code developed at LAPTh to compute cross-sections and other observables at one-
loop in SUSY. The full renormalisation of the MSSM was done some years ago 2,3. In this code,
the complete spectrum and set of vertices are generated at the tree-level through the LanHEP
package 4. The complete set of Feynman rules is then derived automatically and passed to



the bundle FeynArts/FormCalc/LoopTools 5,6,7. A powerful feature of SloopS is the ability
to check not only the UV finiteness , but also IR convergence and gauge independence of the
results through a generalized gauge fixing Lagrangian. Here we present the renormalisation of
the NMSSM, whose implementation is still in progress in SloopS.

4 Numerical results

In the chargino-neutralino sector, one needs to renormalize six parameters. In an on-shell scheme,
this means that the masses of six particles should be chosen as input. Different schemes are
implemented and compared, for example we can take choose both charginos and four neutralinos
as input. A look at the mass matrices, Eq. 7, shows that the charginos will basically reconstruct
δµ and δM2 and the neutralinos δM1, δκ, δs and δtβ. Since there are five neutralinos, we
apparently have the freedom to choose any set of four neutralinos as input. In practice, some
choices lead to numerical instability. In fact, to reconstruct δM1, it is essential to take the
dominantly bino neutralino as input. Indeed, we have to invert a system of six equations to
get the counterterms of the six parameters. If the bino-like neutralino is not in input, this will
imply division by small elements of the mixing matrix and yield a bad reconstruction. The same
argument shows that the dominantly singlino and at least one of the two higgisnos should be
used as input. For each point of the parameter space, a procedure to choose the best scheme
must be implemented. To illustrate the scheme dependence, we compare two schemes, one with
the four lightest neutralinos as input ( OS1234 ) and one with the four heaviest ones ( OS2345) for
three points with different neutralino hierarchy and compute the corrected mass of the remaining
neutralino. The results are presented in table 1.

Table 1: (Left) Hierachy of neutralinos for three benchmark points, only the dominant part for each neutralino is
listed. (Right) Corrected mass of the remaining neutralino in both schemes

χ0
1 χ0

2 χ0
3 χ0

4 χ0
5

Point 1 W̃ 0
3 H̃0 H̃0 S̃0 B̃0

Point 2 S̃0 B̃0 H̃0 H̃0 W̃ 0
3

Point 3 W̃ 0
3 S̃0 B̃0 H̃0 H̃0

,

Scheme Masses point 1 Point 2 Point 3

OS1234
mtree
χ̃5

1002.17 614.78 573.89

m1−loop
χ̃5

710.69 614.82 574.92

OS2345
mtree
χ̃1

125.68 123.51 139.40

m1−loop
χ̃1

125.55 -114.38 139.43

Following the discussions above, we expect OS1234 to be a good scheme for point 2 and 3,
but not for point 1 where the bino is not in input while OS2345 should be a good scheme only
for points 1 and 3. Indeed, for a good choice of scheme, the corrected mass of the neutralino not
chosen as input receives only a small correction neutralino, below 0.1%, but is wrong otherwise.

These few results illustrate the importance of the choice of renormalisation scheme to obtain
reliable results. The procedure described here allows to compute automatically radiative cor-
rections for physical observables such as decay widths and cross sections in the NMSSM. More
complete results will be presented in an upcoming paper we well as the renormalisation of the
sfermion and Higgs sectors.
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