Renormalisation of the NMSSM in SloopS

With Geneviève Bélanger, Guillaume Chalons, Fawzi Boudjema

Laboratoire d'Annecy-le-Vieux de Physique Théorique
Outline

- NMSSM
- SloopS
- Renormalisation
- Phenomenological applications
NMSSM

- MSSM + a new Higgs gauge singlet chiral superfield
- Solves the μ-problem by generating this parameter dynamically
- Extended Higgs sector:
 - 3 CP-even Higgs bosons h_1, h_2, h_3
 - 2 Pseudoscalars A_1, A_2
 - 2 charged Higgs bosons H^\pm
- h_1 or h_2 could be the one observed at LHC
- Easier to get a SM-like 125 GeV Higgs boson
 \[m_h^2 = m_{h,MSSM}^2 + \lambda^2 v^2 \sin^2(2\beta) \]
- Propose new scenarios to account for Dark Matter compared to the MSSM

Vincent Bizouard
SloopS

- An automatic code for the calculation of cross sections at one loop in SUSY (Boudjema, Baro, Semenov, Chalons)
- Full renormalisation of electroweak sector of MSSM performed in the OS-scheme
- Full renormalisation of NMSSM (this talk)
SloopS

Process

- $p_1 \ p_2 \rightarrow p_3 \ p_4 \ldots$
- Restrictions

LoopTools

- *libooptools.a*
- Defines A,B,C,D...

FeynArts/FormCalc

- *model.mod*
- Defines Feynman rules.

Fortran Output

- *xsection.F*
- Defines $\mathcal{M}(p_1 \ p_2 \rightarrow \ldots)$.

Cross-section

- *run*
- Computes $\sigma(P)$.

lanHEP

- *model.src*
- Defines $\Phi, P, L, \delta P, \delta Z$

Automatic generation of Feynman rules and counterterms

Mathematica output

- $\mathcal{M}(p_1 \ p_2 \rightarrow \ldots)$
Renormalisation of the NMSSM

- $M_1, M_2, \mu, \tan(\beta), \lambda, \kappa, A_\lambda, A_\kappa, m_{Hd}, m_{Hu}, m_{Hs}$

- $\tan(\beta)$ links together all sectors: OS-scheme complicated!

- Solution: take a DR condition for $\tan(\beta)$ to decouple sectors:
 - μ, M_2 from the 2 charginos
 - M_1, λ, κ from 3 neutralinos
 - A_λ, A_κ from 2 pseudoscalars
 - m_{Hd}, m_{Hu}, m_{Hs} from minimization equations of Higgs potential

\[\tan(\beta) = \frac{v_u}{v_d} \]
Renormalisation of the NMSSM

• Achievements:
 – Complete renormalisation of gauge, (s)fermions, chargino, neutralino sectors.
 – Any one-loop decay widths in these sectors can be calculated.

• Work in progress:
 – Implementation of the Higgs sector.
Phenomenological applications

- Computation of radiative corrections to some physical observables:
 - Precise calculation of Dark Matter relic density. For example in the annihilation of 2 singlinos.
 - Interplay of NMSSM scenarios with dark matter and collider observables