SO(10) unification at next-to-leading order

Helena Kolešová

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague
Institute of Particle and Nuclear Physics (IPNP), Charles University

Joint work with Michal Malinský (IPNP), Stefano Bertolini (SISSA) and Luca Di Luzio (Universita di Genova)
Proton decay: theoretical uncertainties vs experiment
Proton decay: theoretical uncertainties vs experiment

- grand unified theories (GUTs) predict baryon number violation
- non-SUSY GUTs: “golden” channel for proton decay: $p \rightarrow \pi^0 e^+$
- recent experimental limit
 [Super-Kamiokande, S.Mine talk]
 $\tau(p \rightarrow \pi^0 e^+) \geq 1.4 \times 10^{34}$ y
- new experiments planned to reach up to $\tau(p \rightarrow \pi^0 e^+) \geq 1 \times 10^{35}$ y
 [Hyper-Kamiokande, S.Mine talk]

What about the theory side?
Proton decay: theoretical uncertainties vs experiment

Toy model:
SM model running with 1-loop \(\beta \) function

Effect of 2-loop uncertainties (zoomed in)

One-loop result with "typical" errors due to neglecting 2-loop effects

Log_10 \(\tau(p\rightarrow\pi^0e^+)\)[y]

HK (10 years): \(\tau_p > 1 \times 10^{35} \) y

Recent SK limit: \(\tau_p > 1.4 \times 10^{34} \) y

\(\tau_p \sim M_G^4 \)
Proton decay: theoretical uncertainties vs experiment

Toy model:
SM model running with 2-loop β function

α_S^{-1}, α_L^{-1}

log$_{10}\mu$ [GeV]

Effect of 3 loops negligible w.r.t. uncertainties in α_S (EW)

One-loop result with "typical" errors due to neglecting 2-loop effects

Two-loop result with error due to uncertainty in α_S

Recent SK limit: $\tau_p > 1.4 \times 10^{34}$ y

HK (10 years): $\tau_p > 1 \times 10^{35}$ y

Log$_{10}\tau(p\to\pi^0e^+)[y]$

$\tau_p \sim M_G^4$
Proton decay: theoretical uncertainties vs experiment

Still other sources of uncertainties!

- threshold effects (\sim size of 2-loop corrections) \Rightarrow knowledge of the heavy spectrum needed
- SUSY GUTs: m_{SUSY} uncertainty
- Planck induced effective operators

$$\frac{c}{M_{\text{pl}}} \text{Tr} (G_{\mu\nu} G^{\mu\nu} H)$$

$$\langle H \rangle = M_G \Rightarrow \text{redefinition of gauge couplings} \Rightarrow \alpha_i \text{ measured} \times \text{unification condition:}$$

$$(1 + k_i \varepsilon)\alpha_i(M_G) = (1 + k_j \varepsilon)\alpha_j(M_G)$$

$$\varepsilon \sim M_G / M_{\text{pl}}, \, k_i \sim \mathcal{O}(1)$$

HK (10 years): $\tau_p > 1 \times 10^{35} \text{y}$

Recent SK limit: $\tau_p > 1.4 \times 10^{34} \text{y}$

$\tau_p \sim M_G^4$
Proton decay: theoretical uncertainties vs experiment

Toy model: SM model running with 1-loop β function

"Typical" uncertainty due to Planck-suppressed operators (zoomed in)

One-loop result with "typical" errors due to neglecting 2-loop effects
Two-loop result with error due to uncertainty in α_S

One-loop result with "typical" error due to Planck-suppressed operators

Log$_{10}$τ($p \rightarrow \pi^0 e^+$)[y]

HK (10 years): $\tau_p > 1 \times 10^{35}$y
Recent SK limit: $\tau_p > 1.4 \times 10^{34}$y

$\tau_p \sim M_G^4$
Non-SUSY SO(10) broken by $\langle 45_H \rangle$

- $\text{SO}(10) \xrightarrow{\langle (1,1,1,0)_{45_H} \rangle} SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ or
 $\text{SO}(10) \xrightarrow{\langle (1,1,3,0)_{45_H} \rangle} SU(4)_C \times SU(2)_L \times U(1)_R$

Abandoned due to tachyonic instabilities, however, cured @ quantum level!

Exact unification and correct seesaw scale ($\langle 126_H \rangle \equiv \sigma \sim 10^{13}$ GeV) ensured by making either $(8, 2, +1/2)$ or $(6, 3, 1/3)$ scalar field light

(8, 2, +1/2) within the reach of LHC if proton lifetime above HK limits
Non-SUSY SO(10) broken by $\langle 45_H \rangle$

- $\text{SO}(10) \overset{\langle (1,1,0)_{45_H} \rangle \equiv \omega_{BL}}{\longrightarrow} \text{SU}(3)_c \times \text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_{B-L}$ or
- $\text{SO}(10) \overset{\langle (1,3,0)_{45_H} \rangle \equiv \omega_{R}}{\longrightarrow} \text{SU}(4)_C \times \text{SU}(2)_L \times \text{U}(1)_{R}$

- Abandoned due to tachyonic instabilities, however, cured @ quantum level!

- $\text{Tr} (G_{\mu\nu} 45_H G^{\mu\nu}) = 0 \Rightarrow$ LO “gravity smearing” effects absent
Non-SUSY SO(10) broken by $\langle 45_H \rangle$

- $\text{SO}(10) \xrightarrow{\langle (1,1,1,0)_{45_H} \rangle \equiv \omega_{BL}} SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ or $\text{SO}(10) \xrightarrow{\langle (1,1,3,0)_{45_H} \rangle \equiv \omega_R} SU(4)_C \times SU(2)_L \times U(1)_R$

- Abandoned due to tachyonic instabilities, however, cured @ quantum level! [Bertolini, Di Luzio, Malinsky, 2010, arXiv: 0912.1796]

- $\text{Tr} \left(G_{\mu\nu} 45_H G^{\mu\nu} \right) = 0 \Rightarrow$ LO “gravity smearing” effects absent

- Studied @ 2 loop level, heavy spectrum computed

Non-SUSY SO(10) broken by $\langle 45_H \rangle$

- SO(10) $\langle (1,1,1,0)_{45_H} \rangle \equiv \omega_{BL} \rightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ or
 - SO(10) $\langle (1,1,3,0)_{45_H} \rangle \equiv \omega_R \rightarrow SU(4)_C \times SU(2)_L \times U(1)_R$

Abandoned due to tachyonic instabilities, however, cured @ quantum level! [Bertolini, Di Luzio, Malinsky, 2010, arXiv: 0912.1796]

- $\text{Tr} (G_{\mu\nu}45_H G^{\mu\nu}) = 0 \Rightarrow$ LO “gravity smearing” effects absent

\Rightarrow Studied @ 2 loop level, heavy spectrum computed

- Exact unification and correct seesaw scale ($\langle 126_H \rangle \equiv \sigma \sim 10^{13}$ GeV) ensured by making either $(8, 2, +1/2)$ or $(6, 3, 1/3)$ scalar field light [Bertolini, Di Luzio, Malinsky, 2010, arXiv: 1302.3401], [HK, Malinsky, 2014, arXiv: 1409.4961]

- $(8, 2, +1/2)$ within the reach of LHC if proton lifetime above HK limits

Helena Kolešová: SO(10) @ NLO
Non-SUSY SO(10) broken by $\langle 45_H \rangle$

- $SO(10) \xrightarrow{\langle (1,1,1,0)_{45_H} \rangle} SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ or $SO(10) \xrightarrow{\langle (1,1,3,0)_{45_H} \rangle} SU(4)_C \times SU(2)_L \times U(1)_R$

- Abandoned due to tachyonic instabilities, however, cured @ quantum level! [Bertolini, Di Luzio, Malinsky, 2010, arXiv: 0912.1796]

- $\text{Tr} \left(G_{\mu\nu} 45_H G^{\mu\nu} \right) = 0 \Rightarrow \text{LO} \: \text{"gravity smearing" effects absent}$

- Studied @ 2 loop level, heavy spectrum computed

- Exact unification and correct seesaw scale ($\langle 126_H \rangle \equiv \sigma \sim 10^{13} \, \text{GeV}$) ensured by making either $(8, 2, +1/2)$ or $(6, 3, 1/3)$ scalar field light [Bertolini, Di Luzio, Malinsky, 2010, arXiv: 1302.3401], [HK, Malinsky, 2014, arXiv: 1409.4961]

- $(8, 2, +1/2)$ within the reach of LHC if proton lifetime above HK limits

Thank you for attention!