Collecting and analysing data at high pile-up with ATLAS and CMS.

Detector designs, reconstruction performance, and analysis strategies

N. Styles, for the ATLAS and CMS Collaborations, Rencontres De Moriond, 18/03/15

Introduction

- High-Luminosity LHC (HL-LHC), planned to begin operation in 2025
 - Comprehensive program of accelerator upgrades
 - "Phase 2" LHC Upgrade
 - Peak instantaneous luminosity 5 7 x10³⁴ cm⁻²s⁻¹
 - Integrated luminosity 250-300 fb⁻¹ 14 TeV pp collisions per year, aiming at total dataset of 3 ab⁻¹
 - Implies events with pile-up 140-200
- > Will provide extremely rich physics potential
 - To make best use of this, experiments will need to find ways to cope with challenging environment
 - Upgrades to detectors, new reconstruction techniques, revised analysis strategies

See talk from Mike Lamont

ATLAS Detector Phase 1 upgrades

ATLAS will already undergo a series of ' Phase 1' upgrades prior to HL-LHC operation – to be completed by 2020 – which will remain in place for Phase 2

ATLAS Phase 2 Inner Tracker Upgrade - ITK

- For Phase 2 upgrade, ATLAS plans full replacement of Inner Tracker
 - All silicon tracker (pixels and microstrips)
 - Significantly increase granularity
 - Minimise material budget within tracking acceptance
 - Sufficient hits on track to maintain high efficiency and combat combinatorics at high pile-up
- ITK "Letter of Intent" layout has been developed
 - Used as baseline for majority of performance studies

ATLAS – Upgrade to other systems

> New Trigger Architecture

- 2-Level Hardware trigger design
- Level 0: 1 MHz, 6µs latency, uses Calo + Muons
- Level 1: 300-400 kHz, 24µs latency
- L1Track: Use tracking information earlier in trigger processing – move part of HLT track reconstruction to L1
- Region-of-Interest (Rol) based approach

> Calorimeters

- Tile and Liquid Argon calorimeters require full electronics replacements
- Needed to cope with increased radiation levels and trigger rates
- Forward calorimeter may be fully replaced if significant degredation of current system, or higher granularity mandated by physics requirements

ATLAS– Layout Concepts with high-η extensions

- Potential for extending tracking coverage to |η|<4 under serious consideration
 - Tracking performance under investigation – limitations from field strength in forward region
 - Extension of pixel system proposed with "rings" in place of traditional endcap disks – offers more flexibility for placement of modules and services

Could be combined with modifications to other systems to maximise impact

z (m)

- Additional muon chambers
- Increase granularity in forward calorimeter

See also talk from Alex Tuna

CMS Detector Phase 1 Upgrades

- > CMS also plans Phase 1 Upgrades that will remain in place for Phase 2
 - Pixel system will be replaced for Phase 1, but not remain in place

N. Styles | Moriond EW | 18/03/2015 | Slide 7

CMS Phase 2 Inner Tracker Upgrade

CMS baseline design for full tracker replacement in Phase 2

- As ATLAS, emphasis on minimising material and increasing granularity, with ample hit coverage over tracking acceptance
- CMS baseline includes tracking coverage up to |η|<4</p>
- CMS Tracker replacement designed to allow self-seeded L1 Track Trigger different approach to allowing tracking information at earlier stage of trigger

CMS Self-Seeded Track Trigger

L1 Tracking performance using stub input

- Use lever-arm between sensor sides to trigger on high-p₁ tracks
 - Different granularities used in different regions as necessary
- > 2 Hardware implementations under consideration
 - Associative memory & commerical FPGAs
 - L1 tracking performance under study
 - Requires ~10 µs latency

~ 44 cm² active area For r > 20 cm

CMS Upgrades to other systems

- Forward calorimetry will need replacement due to radiation-induced signal loss – 2 concepts under consideration
 - Compact Pb/LYSO Shashlik Forward EM Calorimeter with Scintillator-based HCAL
 - Silicon/lead/copper EM and silicon/brass HCAL, with scintillator/brass backing calorimeter

Improvements to Muon system

- Electronics upgrades to comply with Trigger upgrade
- IRPCs and GEMs in forward (1.6<|η|<2.4) region enhanced redundancy and cope with higher rates
- Very-Forward extension to higher η with GEMs baseline 2.0<|η|<3.0 (dependent on calorimetry)

Performance of Upgraded Detectors - Vertexing

- CMS studied vertexing performance of new detector together with algorithmic improvements
 - Shows improvements with respect to 'aged' Phase I detector
 - Improvement of vertex finding efficiency from 80 % (aged detector, old algorithm) → 96 % (new detector, new algorithm)
- > ATLAS studied effect of different beam profiles
 - σ =5cm gaussian, and 'long, flat' beamspot from -15cm to +15cm in z
 - Currently using "nonoptimised" vertexing

'Long, flat' beamspot requires crab cavities

Performance of Upgraded Detectors - B-tagging

- > Upgraded detectors allow b-tagging performance at phase 2 very similar to that at phase 1 despite significantly increased pile-up
 - Performance helped further if correct primary vertex identification can be improved
 - If correct primary vertex identified, performance independent of beam profile

10

10³

10²

10

0.5

0.55

Light-jet rejection

14 TeV. PU = 50/140

tt, jet p_ > 30 GeV, |n| < 1.4

CMS Simulation Preliminary

Pile-up Mitigation Techniques

- Mitigation of pile-up effects and rejection of pile-up objects will be crucial to achieving optimum physics reach
 - Timing information has proved promising as a way to mitigate pile-up effects in reconstruction – dedicated timing layer could provide both charged particle and photon timing
 - Applying cuts on variables related to charged fraction helps reduce number of pile-up jets, as does requiring track-jet matching criteria

Higgs Measurement Potential at HL-LHC

> HL-LHC will function as a "Higgs Factory"

 Will greatly increase precision of coupling and signal strength measurements – particularly if theory uncertainties also improve significantly

Higgs Pair Production

Measurement of Higgs Pair Production necessary for determining Higgs Self-Coupling

- Very small cross section means HL-LHC is great opportunity for this
- Destructive interference between diagrams with/without self-coupling contribution
- $HH \rightarrow bb\gamma\gamma$ one of the most promising channels
- Eventual measurement will utilise combination of results across channels and experiments – CMS and ATLAS discussing analyses to understand differences and explore potential improvements

HL-LHC BSM Potential

Summary

- High Luminosity upgrade of the LHC offers huge potential to further explore the High Energy Physics landscape
 - 3 ab⁻¹ dataset at 14 TeV allows large gains in precision, discovery potential, and makes a number of important, low cross-section measurements possible
 - CMS Upgrade Studies: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP
 - ATLAS Upgrade Studies: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

> Challenges presented by high pile-up will necessitate extensive detector upgrades

- Highly promising ATLAS & CMS baselines being further developed and improved
- Techniques under development for reconstruction and analysis of data from new detectors under new conditions
 - Performance & physics reach projections may improve further with future developments and optimisations

Back-up Slides

Beamspot Profiles

Higgs Sytematics

Scenario	Status 2014	Deduced size of uncertainty to increase total uncertainty by $\leq 10\%$ for 300 fb ⁻¹ by $\leq 10\%$ for 3000 fb ⁻¹							
Theory uncertainty (%)	[10-12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	1 C		1.3	1 - 2	(.		-
incl. QCD scale (MHOU)	7	2	-		1.1	-	1.75	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10-20	-	3.5-7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13-28	1.2	- 20	6.5-14	1.2	3.3–7	120	823	2
$1j \rightarrow VBF 2j mig.$	18-58	-	-	-	-	-	6-19	-	-
VBF 2j \rightarrow VBF 3j mig.	12-38	-		-	-		-	6–19	-
VBF									
PDF	3.3	-	-	7	-		2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-		_	-	-	-	-	2

ATL-PHYS-PUB-2014-016

