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Neutrinoless double beta decay is the only experiment at present promising to settle the
Majorana/ Dirac nature of neutrino and is being pursued by a few groups globally. Apart
from establishing Majorana character of neutrinos this experiment is also most sensitive to
look for the neutrino mass and establish lepton number violation. However, in the process of
extraction of neutrino mass from half life measurement one has to use the nuclear transition
matrix elements for the nuclei involved. Studies in different models for nuclear matrix elements
calculations in general are discussed and the connected uncertainties too are reported.

1 Introduction

Confirmation of neutrino oscillations in different experiments1 has established the massive char-
acter of neutrino and served as a strong evidence to look beyond the well-accepted standard
model of particles. Most of the unified theories thus evolved are based on Majorana character of
neutrinos. It was realized almost eighty years back that neutrinoless double beta decay (DBD) is
one of the best possible experiments to explore the nature of neutrino 2. Intermittent attempts
have been made since then but only after first successful direct experimental observation for
82Se in 1987 the measurements of half lives for two neutrino DBD ware taken up seriously in the
decades of 80s and 90s. As a result, now it is known for almost a dozen nuclei in the range of
1019 to 1022 yrs. In 2004, a controversial HdM measurement 3 on neutrinoless DBD of 76Ge was
reported in the order of 1025 yrs. Since then quite a few attempts are being made to achieve
the expected half lives predicted in this order. Recently 4 some experiments have achieved this
range of measurements and have plans to go an order or two higher that would correspond to
the mass of neutrino in 10s or 100s of meV ranges. At present neutrinoless DBD is the only
experiment promising to disclose the Majorana/ Dirac nature of neutrino and is being pursued
rigorously by different groups (reviewed in Refs. 5,6).

Different theoretical models and approaches used for extraction of nuclear matrix elements
(NMEs) play crucial role in arriving at the value of neutrino mass from neutrinoless DBD half
life. We have presented brief summary of these models and some of our calculations in deformed
HF and projected HFB models in subsequent sections. Physically important considerations to
address the variations in NMEs that have been discussed in literature recently are also presented
7. Calculations of NMEs in general are presented and the connected uncertainties in particular
for QRPA and PHFB are reported towards the end. We conclude with the important future
considerations to be addressed urgently in near future by theoreticians.

aThe present work is done in collaboration with P. K. Rath (Univ. of Lucknow, India), S. K. Ghorui (IIT
Ropar, India), R. Chandra (BBA Univ., Lucknow, India), K. Chaturvedi (Bundelkhand Univ., Jhansi, India) and
J. G. Hirsch (Universidad Nacional Autonona de Mexico)



2 Nuclear Models

A variety of nuclear models is currently employed for the study of double beta decay. Large scale
shell model calculations are the most desirable approach 8, but highly limited in the description
of medium and heavy mass nuclei. The most popular and successful model is the Quasiparticle
Random Phase Approximation (QRPA) and its extensions9,10. The inclusion of nuclear deforma-
tion has also been carried out in the deformed QRPA11, the Projected Hartree-Fock-Bogoliubov
(PHFB) 12, the Interacting Boson Model (IBM) 13, and the Energy Density Functional (EDF) 14

approaches. The relative applicability and shortcomings of the various models are discussed in
more details in Refs. 6,7,9. Below, we briefly discuss about different models for the completeness.
The Nuclear Shell Model (NSM): The NSM tries to solve the nuclear many-body problem as
accurate as possible and correlations are treated exactly. However, only a limited number of
orbits close to the Fermi levels are considered. The effective interactions are usually constructed
starting from monopole corrected G-matrices or through a renormalization-group treatment.
The Quasiparticle Random Phase Approximation (QRPA): The QRPA and its extensions have
emerged as successful model as it include large number of basis space. On the otherhand,
all correlations are not included. The particle numbers are not exactly conserved as proton-
proton and neutron-neutron pairings are treated in the BCS approximation. The many-body
correlations are treated at the RPA level within the quasiboson approximation.
The Projected Hartree-Fock-Bogoliubov Method (PHFB): In the PHFB wave functions of good
particle number and angular momentum are obtained by projection on the axially symmetric
intrinsic HFB states. In applications to the calculation of the 0νββ-decay NMEs, the effective
Hamiltonian contains terms which are separable in the pairing, quadrupole, and hexadecupole
channels.
The Interacting Boson Model (IBM-2): In IBM model the nucleon pair are represented by bosons
with angular momentum either L=0 (s boson) or L=2 (d boson). The interacting potential of
bosons acts only in pair which is analogous to the Shell Model. The bosons interact through
one- and two-body forces giving rise to bosonic wave functions.
The Energy Density Functional (EDF) Method: The EDF method is based on HFB calculations
with density dependent Gogny functional. It is an improved method with respect to the PHFB
model. The particle number and angular momentum projection for parent and daughter nuclei
is performed. Configuration mixing within the generating coordinate method (GCM) is included
to take into account beyond mean-field effects. A large single particle basis is considered in the
calculations.

3 Results and Discussions

3.1 2ν ββ decay

The nuclear ββ decay is a second order process in weak interaction. The inverse half-life of the
2ν ββ decay for the 0+ → 0+ transition can be written as 15

[T 2ν
1/2(0

+ → 0+)]−1 = G2ν |M2ν |2 , (1)

where G2ν is the integrated kinematical factor and can be calculated with good accuracy 15,16.
Using the experimental half-life T 2ν

1/2 and accurately known integrated kinematical factor G2ν ,

the values of M2ν can be extracted directly from Eq. (1). It is observed that in all cases of 2ν
β−β− decay, the double Gamow-Teller (DGT) transition matrix elements M2ν are sufficiently
quenched. The main motive of all theoretical calculations is to understand the physical mecha-
nism responsible for the observed suppression of M2ν . Hence, the validity of different nuclear
models can be tested through the calculation of M2ν .

In Fig. 1, we present a compilation of the magnitude of double beta decay matrix elements
calculated within Deformed Hartree-Fock (DHF) model for 0+(gs) → 0+(gs) transition of the



nuclei studied presently. The purpose of this pictorial representation is for better viewing of the
matrix elements calculated within different formalisms and their comparison with the values ex-
tracted from average/ recommended experimental half-lives given by Barabash 17 for gA = 1.254
and gA = 1.0. However, these values are updated very recently18 and we will incorporate them in
our future study. From Fig. 1, we see that there is considerably large variation in the M2ν values
calculated within different models. Therefore, it is very difficult to draw a systematic trend for
NTMEs.
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Figure 1 – Comparison of calculated NTMEs with available experi-
mental results for 2ν β−β− decay of 76Ge, 82Se, 100Mo, 110Pd, 116Cd,
124Sn, 130Te and 150Nd isotopes for the 0+(gs) → 0+(gs) transition.

From the above discussion it is
clear that the validity of nuclear
models presently employed to cal-
culate two neutrino double beta de-
cay transition matrix elements (M2ν

) cannot be uniquely established. It
is also to be noted that the value of
axial- vector coupling constant gA
plays vital part in the uncertainty
of calculated half-lives as the rate of
double beta decay varies on (gA)4.
The renormalized or quenched value
of gA = 1.0 is taken in order to in-
clude the nuclear core (medium) ef-
fects such as the spin-isospin correla-
tions. To fine tune the quenching of
gA value, the charge exchange reac-
tion experiments involving the dou-
ble beta decay nuclei or the nuclei in the vicinity of ββ emitters can play important role.

3.2 0ν ββ decay

In the light Majorana neutrino mass mechanism, the half-lives T 0ν
1/2 for the 0+ → 0+ transition

are given (in the closure approximation), by 19[
T 0ν
1/2

(
β−β−

)]−1
= G01

(
β−β−

) ∣∣∣∣〈mν〉
me

∣∣∣∣2 ×∣∣∣∣∣∑
n,m

〈
0+F

∥∥∥∥[−HF (rnm)

g2A
+ σn · σmHGT (rnm) + SnmHT (rnm)

]
τ+n τ

+
m

∥∥∥∥ 0+I

〉∣∣∣∣∣
2

(2)

The neutrino potentials associated with Fermi, Gamow-Teller (GT) and tensor operators
are given by

Hα(rnm) =
2R

π

∫
fα (qrnm)(
q +A

) hα(q)qdq

where fα (qrnm) = j0 (qrnm) and fα (qrnm) = j2 (qrnm) for α =Fermi/GT and tensor potentials,
respectively.

The calculation of M (0ν) in the PHFB model has been discussed in earlier works 12. The
effective Hamiltonian used is given by 12

H = Hsp + V (P ) + V (QQ) + V (HH) (3)

where Hsp, V (P ), V (QQ) and V (HH) denote the single particle Hamiltonian, the pairing,
quadrupole-quadrupole and hexadecapole-hexadecapole part of the effective two-body interac-
tion, respectively.



Short range correlations and radial evolutions of NTMEs

In the literature, the short range correlations (SRC) have been included through the exchange
of ω-meson 20, effective transition operator 21, unitary correlation operator method (UCOM) 22,
self-consistent CCM 23 and phenomenological Jastrow type of correlations with Miller-Spenser
parameterization 24. Further, Šimkovic et al. 23 have shown that in the self-consistent CCM,
it is possible to parametrize the effects of Argonne V18 and CD-Bonn nucleon-nucleon (NN)
potentials by the Jastrow correlations with Miller-Spenser type of parameterization given by
f(r) = 1− ce−ar2(1− br2). In the present work, the above form is adopted with a = 1.1 fm−2,
1.59 fm−2, 1.52 fm−2, b = 0.68 fm−2, 1.45 fm−2, 1.88 fm−2 and c = 1.0, 0.92, 0.46 for Miller-
Spencer parameterization, Argonne V18 and CD-Bonn NN Potentials, which are denoted as
SRC1, SRC2 and SRC3, respectively.

The inclusion of short range correlation (SRC) and finite size of nucleons with dipole form
factor (F) induces an extra quenching in the NTMEs M (0ν), which can range from the order
of 18%–23% for SRC1 to negligible for SRC3. The dipole form factor (F) always reduces the
NTMEs by 12%–15% in comparision to the point-particle case. Adding SRC (F + SRC) can
further reduce the transition matrix elements for SRC1 or slightly enhance them, partially
compensating for the effect of the dipole form factor. It is interesting to note that the effect of
F+SRC2 is almost negligible, that is, nearly the same as F.
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Figure 2 – Radial dependence of C(0ν)(r) for
the
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decay of 100Mo isotope.

The radial evolution of M (0ν) can be studied by
defining

M (0ν) =

∫
C(0ν) (r) dr (4)

The radial evolution of M (0ν) has been studied for four
cases, namely F, F+SRC1, F+SRC2 and F+SRC3. To
make the effects of finite size and SRC more transpar-
ent, we plot them for 100Mo in Fig. 2. In case of fi-
nite sized nucleons, the C(0ν) are peaked at r ≈1.25
fm and with the inclusion of SRC1, SRC2 and SRC3,
the position of peak remains unchanged. However, the
magnitudes of C(0ν) change in the latter three cases.

Table 1: Extracted limits on effective light Majorana neutrino mass 〈mν〉 and predicted half lives using average

NTMEs M
(0ν)

and uncertainties ∆M
(0ν)

for the
(
β−β−)

0ν
decay of 96Zr, 100Mo, 128,130Te and 150Nd isotopes.

β−β− gA M
(0ν)

ISM (R)QRPA IBM G01 T 0ν
1/2(yr) Ref. 〈mν〉 T 0ν

1/2(y)

emitters 8 23 13 (10−14y−1) < mν >= 50 meV
100Mo 1.254 7.22±0.50 2.91–5.56 3.732 4. 640 4.6×1023 25 0.48+0.04

−0.03 4.32+0.66
−0.54×1025

1.0 7.94±0.58 0.69+0.05
−0.05 8.83+1.44

−1.15×1025

128Te 1.254 4.22±0.31 2.26 3.21–5.65 4.517 0.1849 1.1×1023 26 8.50+0.67
−0.58 3.18+0.52

−0.42×1027

1.0 4.66±0.34 12.10+0.94
−0.81 6.44+1.04

−0.84×1027

130Te 1.254 4.66±0.43 2.04 2.92–5.04 4.059 4. 490 3.0×1024 27 0.30+0.03
−0.02 1.07+0.23

−0.17×1026

1.0 5.15±0.48 0.42+0.04
−0.04 2.17+0.47

−0.35×1026

150Nd 1.254 3.24±0.44 2.321 21.16 1.8×1022 28 2.55+0.40
−0.31 4.69+1.60

−1.06×1025

1.0 3.59±0.50 3.63+0.58
−0.44 9.49+3.29

−2.16×1025

4 Uncertainty in NTMEs

4.1 Statistical uncertainties within PHFB model

In the study of both (ββ)2ν and (ββ)0ν decay modes, the renormalized value of axial vector cou-
pling constant gA is a major source of uncertainty. In the (ββ)0ν decay, the role of pseudoscalar



Figure 3 – Scatter plot of estimated QRPA values for logarithms of the (ββ)0ν matrix element for pairs of decaying
nuclei, together with 1σ error ellipses. Reprinted from Ref. 29; Copyright 2009 by the American Physical Society.
Error bars on points indicate uncertainty in the QRPA parameter gpp. Blue points are calculated with the
Miller-Spencer treatment of short-range correlation functions and red points with the UCOM treatment.

and weak magnetism terms 19 is crucial, and the finite size of nucleons (FNS) and short range
correlations (SRC) play a decisive role vis-a-vis the radial evolution of nuclear transition matrix
elements (NTMEs) 8,12.

The uncertainties associated with the NTMEs M (0ν) and M (0N) for 0νββ decay due to the
exchange of light and heavy neutrinos, respectively are evaluated by calculating the mean and
standard deviation as given by

M
(K)

=

∑N
i=1M

(K)
i

N
and ∆M

(K)
=

1√
N − 1

[
N∑
i=1

(
M

(K) −M (K)
i

)2]1/2
. (5)

In Table 1, we have shown the average NTMEs and uncertainties for light Majorana neu-
trino mass mechanism. The predicted half-lives are given th Column 8 and compared with the
available experimental results. The extracted values of light Majorana-ν mass are tabulated in
column 10 of Table 1.

4.2 Statistical uncertainties within QRPA model

Due to large uncertainties in the systematics of nuclear matrix elements calculations, it is difficult
to correctly analyze the statistical errors in nuclear matrix elements. However, efforts have
been made to study uncertainties in (ββ)0ν matrix elements for various QRPA-like calculations
by varying the value of gA (1.0 and 1.25), the treatment of short range correlations (via the
Miller-Spencer Jastrow function and the UCOM method), the size of the single-particle model
space and the gpp parameter (the most important parameter of QRPA model). The log of the
nuclear matrix element in one nucleus versus the log of the matrix element in a second, for all
possible pairs of nuclei are plotted in Fig. 3 (adopted from Ref. 29). The error bar on each point
representing the uncertainty in gpp. The ellipses in the plot represent 1σ error in the matrix
elements.



5 Conclusions

Reduction in uncertainty in NMEs first with in the different versions of a given model has to
be reduced by trying to explain all possible systematics of experimental observation of nuclei
involved in the DBD including intermediate nuclei. Any important physical processes that
might have been ignored in earlier studies or the approximations used in past that might not be
desirable for inclusion of short range correlations need to be explored and the effects studied.
Finally different models have to include these effects and come to some possible consensus.
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