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We discuss the various incarnations of a gauged B−L symmetry: 1) unbroken, it features Dirac
neutrinos, neutrinogenesis to create the baryon asymmetry of our Universe, and a potentially
light Z

′ boson; 2) broken by two units, we obtain the standard case of Majorana neutrinos,
seesaw and thermal leptogenesis; 3) broken by four units, we find Dirac neutrinos with lepton-
number-violating interactions, which can give rise to a new Dirac leptogenesis mechanism. We
review and discuss the signatures distinguishing the three scenarios.

1 Introduction

The observation of a Brout–Englert–Higgs-like scalar boson at the LHC completes the Standard
Model (SM). It is however evident that the SM can not be the final description of nature, with

• neutrino masses and mixing,

• dark matter (DM),

• and the baryon asymmetry of the Universe (BAU)

among the most pertinent observations that require new physics. All three problems can be
solved by relatively simple SM extensions, but there is no unique or (arguable) even simplest
solution, so experimental input and theoretical motivation are required to lead the way. In this
talk we will consider baryon (B) and lepton number (L) as guiding principles towards a solution
to the three problems above. DM is not the focus here, but we will remark on it parenthetically.

It is well known that the classical SM Lagrangian has the accidental global symmetry
U(1)B ×U(1)Le ×U(1)Lµ ×U(1)Lτ due to its particle content/gauge group representations and
the requirement for renormalizability. Non-perturbative quantum effects – instantons at zero
temperature, sphalerons at T 6= 0 – break both B and L by three units each, so ∆(B + L) = 6,
while B − L remains conserved: ∆(B − L) = 0. The global symmetry of the quantum SM

Lagrangian is hence only 1

Gsym = U(1)B−L × U(1)Le−Lµ × U(1)Lµ−Lτ , (1)

picking a convenient basis in generator space. We know from neutrino oscillations that U(1)Le−Lµ×
U(1)Lµ−Lτ is a broken symmetry, whereas we have yet to observe a process violating B − L.
(In fact, no process violating B or L has ever been observed, but we are very confident in the
unobservable ∆(B + L) = 6 breaking predicted by theory.)

Gsym is the anomaly-free global symmetry of the SM Lagrangian at quantum level, and it is
tempting to promote it to a local symmetry, i.e. a gauge symmetry alongside SU(3)C×SU(2)L×
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U(1)Y . This only requires the introduction of three right-handed neutrinos νR, uncharged under
the SM gauge group, to cancel anomalies – a cheap price to pay for such an enlarged gauge group.
Furthermore, the quantum numbers of the νR allow us to write down additional couplings

∆L = −νRyνH
†L+ h.c., (2)

which automatically give rise to a (Dirac) neutrino mass matrix mD = yν〈H〉 after electroweak
symmetry breaking. Promoting the global symmetry of the SM to a local symmetry thus requires
neutrino masses for consistency, which can be taken as a motivation for this approach.

Flavored subgroups of Gsym, such as U(1)B+3(Le−Lµ−Lτ ) or U(1)Lµ−Lτ , make for simple fla-

vor symmetries that can shed light on the leptonic mixing pattern1 and neutrino hierarchies2,3

(see also Ref. 4). Gauged Lµ − Lτ in particular has recently received attention as an explana-

tion for some tantalizing hints in h → µτ 5 and lepton-nonuniversal B-meson decays 6,7,8 (see
contribution by A. Crivellin in these proceedings).

For simplicity, we will here focus on the unflavored part of Gsym, i.e. consider a gauged
B − L symmetry. This still requires three right-handed neutrinos, so the argument regarding
automatically massive neutrinos from above applies. In the next sections we will explore the
different realizations of a gauged U(1)B−L and their different phenomenology, in particular their
very different solutions to the problems of neutrinos mass, the BAU, and DM (parenthetically).

2 Majorana B − L

We start with the most popular realization of gauged U(1)B−L, in which the symmetry is broken
spontaneously by two units, i.e. ∆(B − L) = 2. For this, a new SM-singlet scalar φB−L=2 is
introduced which carries B − L = 2 (= −L) and can hence couple to the νR via

L ⊃ −νRyνH
†L+ 1

2νRKνcR φ∗
B−L=2 + h.c., (3)

which gives rise to a right-handed Majorana mass matrixMR = K〈φB−L=2〉 after B−L breaking
and ultimately light Majorana neutrino masses via seesaw:

Mν ≃ −mT
DM−1

R mD ∼ yTν K
−1yν

(

1014GeV

〈φB−L=2〉

)

eV. (4)

For Yukawa couplings of order one, the B − L breaking scale is untestably high and the only
signature of “Majorana B − L” is neutrinoless double beta decay (0ν2β), mediated by the
light Majorana neutrinos. While the 0ν2β rate is definitely non-zero in this scenario, it could
still be unobservably small for normal-hierarchy neutrinos if (Mν)ee ≃ 0. Additional signatures
arise if the Yukawa couplings are chosen to be small, lowering the right-handed masses below the
electroweak scale. In particular, choosing the flavor structure in such a way that one of the right-
handed neutrinos, say νR,1 barely couples to the left-handed neutrinos and has a mass around
keV, it can be sufficiently stable to form (warm) DM.b The small mixing of νR,1 then effectively
decouples it from the seesaw mechanism, so one of the active neutrinos remains massless.

“Majorana B − L” can also explain the BAU by means of leptogenesis, i.e. the out-of-
equilibrium decay of the heavy right-handed neutrinos νR → LH∗, LH in the early Universe.
CP -violation arises via loops and results in a lepton asymmetry ∆L, i.e. a different number of
leptons and antileptons. Since the sphaleron processes (∆B = ∆L = 3) are in equilibrium with
the rest of the SM plasma at temperatures T & 100GeV, the lepton asymmetry will partly be
converted to a baryon asymmetry ∆B.

Breaking B −L by two units can hence solve the three main problems of the SM: neutrinos
obtain Majorana masses via seesaw, the BAU is explained by leptogenesis, and one can even

bAn alternative approach would be to use the remaining Z
L
2 symmetry to stabilize a newly introduced particle

with appropriate B − L charge.



make one of the right-handed neutrinos stable enough to form DM. This is however not the only
viable realization of a gauged U(1)B−L, and we will cover two very different scenarios in the
next sections.

3 Unbroken B − L

As already stated in the introduction, we have yet to observe a process that violates B − L.
It is hence tempting to keep U(1)B−L as an unbroken gauge symmetry 9, making B − L a
properly conserved quantum number alongside electric charge and color. Neutrinos are then
Dirac particles, and one either has to chose the Yukawa couplings very small to obtain the sub-
eV required masses, yν = mν/〈H〉 . 10−11, or introduce additional new physics that gives a
more natural solution.

Surprisingly, even the BAU can be explained in this framework, with a mechanism dubbed
neutrinogenesis 10. For this, new heavy doublet scalars Ψj are introduced which decay out of
equilibrium in the early Universe. CP violation via loops can give rise to lepton asymmetries
in the decays Ψj → LνR, LνR, which take the form ∆νL = −∆νR 6= 0. Lepton number is hence
not broken in the decays, but merely distributed among left- and right-handed leptons. The
crucial observation is now that the Yukawa couplings yν = mν/〈H〉 are too small to put the νR
in equilibrium with the rest of the SM plasma, and in particular with the sphalerons. These will
therefore only see ∆νL , and process it into a baryon asymmetry ∆B via the usual ∆(B+L) = 6
processes, even though the total B − L number of the Universe is zero at all times.

With the BAU and neutrino masses resolved, let us discuss the gauge boson Z ′ coupled to
B − L. If massless, the gauge coupling g′ is required to be tiny (g′ . 10−24) in order to be
compatible with tests of the weak equivalence principle. However, since U(1)B−L is abelian,
we can actually introduce a Z ′ mass with the Stückelberg mechanism in a gauge-invariant way
without breaking the symmetry. This makes the phenomenology of the Z ′ much more interesting,
because the mass is not coupled to neutrino masses, leptogenesis or the weak scale, and can
hence sit at any scale. For low masses, constraints in the MZ′–g′ plane arise from cosmology,
astrophysics (stellar evolution), Big Bang nucleosynthesis and colliders 9. Unavoidable kinetic
mixing results in a Z ′ coupling to hypercharge and gives rise to additional effects.

As far as DM is concerned, the Z ′ can be long-lived if the gauge coupling and/or mass are
small. The correct abundance can then be obtained by a misalignment mechanism analogous
to axions/hidden photons 11. An alternative way to solve the DM problem in unbroken B − L
would be to introduce a new fermion (boson) with even (odd) B − L charge; seeing as all SM
fermions (bosons) are odd (even) under B − L, the new particle would be stable due to its
U(1)B−L charge (similar to the stability of the electron due to the U(1)EM). A simple freeze-out
mechanism using the Z ′ interactions is then sufficient to obtain the desired DM abundance.

An unbroken gauged U(1)B−L can hence solve all of the three major problems of the SM:
neutrinos obtain simple Dirac masses, the BAU can be obtained by neutrinogenesis, and DM
can be obtained either with the Z ′, or with new particles stabilized by the unbroken U(1).

4 Dirac B − L

Let us turn to the third possibility regarding the fate of gauged U(1)B−L, where the symme-
try is broken – but not by two units. Breaking B − L by any number ∆(B − L) 6= 2 gives
Dirac neutrinos, but since B − L is still broken, this framework still allows for lepton number
violation 12,13.

Seeing as all SM fermions are odd under B − L, only B − L breaking by even numbers can
be observable (otherwise spin would be violated), so we focus on the simplest ∆(B − L) 6= 2



case: ∆(B − L) = 4. Effective operators can be written down without effort:

Od=6 = νcRνR νcRνR , Od=8
1 = |H|2 νcRνR νcRνR , (5)

Od=8
2 = (L

c
H̃)(H†L) νcRνR , Od=8

3 = Fµν
Y νcRσµννR νcRνR . (6)

At d = 10, we only give a selection:

Od=10
1 = (L

c
H̃)(H†L) (L

c
H̃)(H†L) , Od=10

2 = Fµν
Y (L

c
H̃)(H†L) νcRσµννR , (7)

Od=10
3 = Wµν

a (L
c
H̃)(H†τaL) νcRσµννR , Od=10

4 = (uRd
c
R)(dRH

†L)(νcRνR) , (8)

and operators without neutrinos arise at higher dimension still, e.g.

Od=20 =
[

((DµL)
c
H̃)(H†DνL)

]2
⊃ (ecLW

+
µ W+

ν eL)
2 . (9)

Let us present a simple model to show how these effective operators can be obtained and
that they are indeed the lowest lepton-number-violating operators, i.e. ∆(B − L) = 2 processes
do not arise. We introduce a scalar φ with B−L charge 4 to break the U(1)B−L spontaneously
by four units; in order to connect the symmetry breaking to the fermion sector, a second scalar
χ with B−L charge −2 is introduced which serves as a mediator and does not acquire a vacuum
expectation value (VEV). The important parts of the Lagrangian are

−L ⊃ νRyνH
†L+ 1

2νRKνcR χ+ µχ2φ+ h.c. (10)

One can easily realize a scalar potential with minimum at 〈χ〉 = 0, 〈H〉 6= 0 6= 〈φ〉, which
breaks SU(2)L × U(1)Y × U(1)B−L to U(1)EM × Z

L
4 . An exact Z

L
4 symmetry remains, under

which leptons transform as ℓ → −i ℓ and χ → −χ, making the neutrinos Dirac particles but
still allowing for ∆L = 4 processes.c (The remaining Z4 symmetry could naturally be used as a
stabilizing symmetry for a new DM particle, interacting with the SM via the Z ′ and the scalars.)

Since χ does not acquire a VEV, the neutrinos will be Dirac particles ν = νL+νR with mass
matrix mD = yν〈H〉, just like in the unbroken B − L case of Sec. 3. The VEV of φ splits the
masses of the real and imaginary part of χ due to the coupling µχ2φ, so we end up with two
scalars χr,i that couple to νRν

c
R. If these scalars are heavy, we can integrate them out to obtain

the ∆(B − L) = 4 operator (νRν
c
R)

2 of Eq. (5) (see Fig. 1). Other ∆(B − L) = 4 operators can
be obtained by attaching SM interactions, or by going to a left–right extension of this simple
model (see below). We stress again that neutrinos are Dirac particles here, and that there are
no ∆(B − L) = 2 processes allowed by the symmetry (such as 0ν2β).

The ∆(B − L) = 4 interactions can give rise to a new leptogenesis mechanism with Dirac
neutrinos that differs qualitatively from the neutrinogenesis mechanism described in Sec. 3.
For this, we assume several heavy mediator scalars χj , which decay out-of-equilibrium in the
early Universe. Due to the couplings of Eq. (10), the scalars decay either into νRνR or νcRν

c
R,

and loop corrections induce a different rate for both channels 13. After all the scalars have
decayed, we thus end up with an asymmetry in the right-handed neutrinos ∆νR . This in itself is
not helpful, because the right-handed neutrinos are decoupled from the rest of the SM plasma
(which was the main trick in neutrinogenesis). In our case, we need them to be in equilibrium,
so we have to introduce a second scalar doublet to the SM that has stronger couplings to the
νR than the doublet that generates the neutrino mass. Such a model has already been proposed
independently of Dirac B − L in order to explain the smallness of Dirac neutrino masses 15.
In this neutrinophilic two-Higgs-doublet model an additional global symmetry ensures that the
second doublet couples only to LνR, and that it only acquires a tiny VEV (say eV). Because of
this, the neutrino masses are small even if the Yukawa couplings to the second scalar doublet are

cConservation of lepton number modulo n > 2 to forbid Majorana masses was also mentioned in Ref. 14.
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Figure 1: ∆(B − L) = 4 operator (νc
RνR)

2 realized by exchange of scalars. Arrows show flow of lepton number.

large, solving the issue of small Dirac neutrino masses. Even better, the large Yukawa couplings
imply that in our leptogenesis scenario the ∆νR asymmetry is transferred to an asymmetry in the
left-handed leptons by the second doublet, and consequently converted to a baryon asymmetry
by the sphalerons. As a consequence of the required thermalization of the νR, we expect a
contribution to the effective number of neutrinos in the early Universe, namely Neff & 3.14, to
be tested with future Planck-like experiments.

Above we have seen that ∆(B − L) = 4 processes can be the lowest-order lepton-number-
violating effect if neutrinos are Dirac particles, and also that it can lead to a new kind of Dirac
leptogenesis mechanism. Compared to the (already hard to measure) ∆L = 2 processes searched
for in 0ν2β experiments, it is even harder to probe ∆L = 4 processes directly, because of the
high dimensionality of the underlying effective operators. Sensitive nuclear probes analogous to
0ν2β exist – namely the 0ν4β decay 150

60Nd → 150
64Gd+4e− with energy release Q0ν4β ≃ 2.08MeV

testable with existing data from NEMO – but the expected rates in the toy model from above
are unmeasurable small 12. It is hence desirable to construct ∆(B − L) = 4 models that can
lead to stronger effects, which can be achieved in left–right extensions.

Let us embed the electroweak gauge group SU(2)L × U(1)Y into the left–right symmetry
group SU(2)L × SU(2)R × U(1)B−L. Consistency again requires the introduction of right-
handed neutrinos (similar to just gauged B − L) to complete the right-handed lepton doublet
ΨR = (νR, eR)

T ∼ (1,2,−1), while the scalar H is promoted to a bi-doublet H ∼ (2,2, 0). The
most common left–right model corresponds to an extension of “Majorana B − L”, i.e. features
Majorana neutrinos. It is however not difficult to also extend “Dirac B − L” to a left–right
model, simply by promoting the scalars χ and φ from above to

χR =
1√
2





χ−
R χ0

R 0
χ−−
R 0 χ0

R

0 χ−−
R −χ−

R



 ∼ (1,3,−2) , (11)

φR =
1√
6





φ++
R

√
3φ+++

R

√
6φ++++

R√
3φ+

R −2φ++
R −

√
3φ+++

R√
6φ0

R −
√
3φ+

R φ++
R



 ∼ (1,5, 4) . (12)

The couplings analogous of Eq. (10) then take the form (add χL and φL for LR parity)

L ⊃ yΨLHΨR + κΨRχRΨ
c
R + µ tr [χRφRχR] + h.c., (13)

so φ0
R and χ0

R play the same role as φ and χ from above. Note that the triplet χ does not
acquire a VEV in this model, so the neutrinos are Dirac. SU(2)R is nevertheless broken above
the electroweak scale via 〈φR〉 ≫ 〈H〉:

M2
W±

R

≃ 2g2R〈φ0
R〉2 , M2

ZR
≃ 8(g2R + 4g2B−L)〈φ0

R〉2 . (14)

Compared to the toy model from above, it is now possible to consider processes that do not
involve neutrinos, and are in particular not suppressed by small neutrino masses (see Fig. 2).
This opens the way towards collider searches for ∆L = 4 processes such as pp → 4ℓ− + 4W+ at
the LHC or e−e− → ℓ+ℓ+ + 4W− at a future like-sign lepton collider 16.
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Figure 2: ∆(B − L) = 4 operator e4RW
4

R by exchange of scalars in a left–right model.

5 Conclusion

The incredible success of the Standard Model just deepens the mystery of its anomaly-free global
symmetry U(1)B−L. Consistently promoting this global symmetry to a local one automatically
results in massive neutrinos, amending a major problem of the SM. The matter–antimatter
asymmetry of our Universe is also deeply connected to the quantum number B−L, and the new
particles in the wake of the U(1)B−L are potential candidates for DM. We presented an overview
of the three phenomenologically distinct realizations of a gauged U(1)B−L: 1) as an unbroken
symmetry with a Stückelberg Z ′, Dirac neutrinos and neutrinogenesis; 2) broken by two units
with Majorana neutrinos, seesaw, and leptogenesis; 3) broken by n 6= 2 units, e.g. n = 4, leading
to lepton-number-violating Dirac neutrinos and Dirac leptogenesis. Experiments will have to
decide the fate of B − L and resolve the mystery surrounding it.
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