Electroweak production of Zjj and hadronic activity in Zjj events at CMS

Tom Cornelis for the CMS collaboration

50th Rencontres de Moriond on "EW Interactions and Unified Theories"

Universiteit Antwerpen

Features of vector boson fusion $WW \rightarrow Z$ are:

- Central Z decay associated with energetic forward-backward quark jets
- A large η separation between the jets
- A large invariant dijet mass
- Pure electroweak process: surpressed color exchange between the tagging quarks

Electroweak production of Z+2 jets

- Not only VBF, but also other pure electroweak processes lead to the same *lljj* final state
- Large negative interference effects between these diagrams

Analysis strategy

Signal is covered by large Drell-Yan background

- Use Boosted Decision Tree technique to extract signal
- Signal and background strenghts fitted from discriminator output with a CLs method
- Systematics included as nuisances
- Confirm signal in both *ee* and $\mu\mu$ modes
- ► Use both Monte Carlo based and data-driven background models

Monte Carlo based analysis

Information about the input variables and systematics in the back-up slides

Data-driven analysis

 \Rightarrow DY Zjj background model was built from γjj data, with $p_T(\gamma)$ reweighted to $p_T(Z)$

Jets falling in the VBF rapidity gap

- Use of a relative pure signal region ($M_{jj} > 1250 \text{ GeV}$)
- Count jets with p_T > 15 GeV which fall between the two tagging jets

3rd jet kinematics

19.7 fb⁻¹ (8 TeV

 $y_{i3}^* = y_{j3} - \frac{y_{j1} + y_{j2}}{2}$

19.7 fb⁻¹ (8 TeV

Gap fraction: hadronic veto efficiencies

Fraction of events which do not pass a given threshold:

▶ Nice agreement between data and simulation for central jet vetoes!

Conclusions

Confirmed observation of electroweak Zjj production at 8 TeV

Electroweak $pp \rightarrow lljj$ cross section defined for $p_{Tj} > 25$ GeV, $|\eta_j| < 5$, $M_{jj} > 120$ GeV, $m_{ll} > 50$ GeV: $\sigma = 174 \pm 15 \text{ (stat)} \pm 40 \text{ (syst) fb}$ in good agreement with $\sigma_{th} = 208 \pm 11$ fb prediction

Produced results on the hadronic activity in the central region between the two tagging jets

Paper for 7 TeV analysis: JHEP 10 (2013) 062, arXiv:1305.7389

Back-up slides

Interference with DY background

Moriond EW 2015 12/10

Selection and BDT variables

Analysis	A B		С			
Channels	ее, µµ µµ		ee, μμ binned in M _{il}			
Selection	$p_{\rm Th,b} > 50, 30 {\rm GeV}$					
	Rphard	$p_{\rm TZ} > 50 {\rm GeV}$				
	$M_{\rm ii} > 2$	$ y_Z < 1.4442$ $M_{ij} > 450 \text{GeV}$				
Jets	PF	JPT	PF			
Variables used						
M _{ti}	•		•			
$p_{T_{j_1}}, p_{T_{j_2}}$			•			
η_{i_1}, η_{i_2}			•			
$\Delta_{\rm rel}(jj) = \frac{ \vec{p}_{\eta_1} + \vec{p}_{\eta_2} }{p_{\eta_1} + p_{\eta_2}}$			0. C			
Δη						
$ \eta_{i_1} + \eta_{i_2} $	•	•				
$\Delta \phi_{ij}$			•			
$\Delta \phi_{Z,h}$						
yz.	•					
z _Z						
PTZ	•	•				
Rp ^{hard} _T		•				
q/g discriminator	•		•			
DY Zjj model	MC-based	MC-based	From data			

$$\mathsf{R}(p_T^{hard}) = rac{|ec{p}_{Tj1} + ec{p}_{Tj2} + ec{p}_{TZ}|}{p_{Tj1} + p_{Tj2} + p_{TZ}}$$

$$y^* = y_Z - \frac{y_{j1} + y_{j2}}{2}$$

$$z^* = \frac{y^*}{\Delta y_{jj}}$$

Moriond EW 2015 13/10

 $R(p_T^{hard}) = rac{|\vec{p}_{Tj1} + \vec{p}_{Tj2} + \vec{p}_{TZ}|}{p_{Tj1} + p_{Tj2} + p_{TZ}}$

Moriond EW 2015 14/10

 Z^*

Moriond EW 2015 15/10

dijet invariant mass

signal region

control region

Analysis A: electron channel, particle flow jets, simulation-based background

Analysis A: muon channel, particle flow jets, simulation-based background

Analysis B: muon channel, jet-plus-track jets, simulation-based background

Moriond EW 2015 19/10

Analysis C: electron + muon channel, particle flow jets, data-driven background

Uncertainties

	Analysis A			Analysis B	Analysis C		
	ee	μμ	$ee + \mu\mu$	μμ	ee	μµ	ee + µµ
Luminosity	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Trigger/lepton selection	0.04	0.04	0.04	0.04	0.04	0.04	0.04
JES+residual response	0.06	0.05	0.05	0.04	0.06	0.05	0.05
JER	0.02	0.02	0.02	0.02	0.04	0.04	0.03
Pileup	0.01	0.02	0.02	0.01	0.01	0.01	0.01
DYZjj	0.07	0.05	0.07	0.08	0.14	0.12	0.13
q/g discriminator	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Top, dibosons	0.01	0.01	0.01	0.01	< 0.01	< 0.01	< 0.01
Signal acceptance	0.03	0.04	0.04	0.04	0.06	0.06	0.06
DY/EW Zjj interference	0.14	0.14	0.14	0.13	0.06	0.08	0.08
Systematic uncertainty	0.19	0.18	0.19	0.17	0.17	0.17	0.18
Statistical uncertainty	0.11	0.10	0.07	0.09	0.24	0.21	0.16
$u = \sigma / \sigma_{\rm th}$	0.82	0.86	0.84	0.89	0.91	0.85	0.88

Excellent agreement between the different analyse methods!

MC closure for data-driven DY+2 jets

The distributions for $\gamma j j$ events are in good agreement with the DY simulation

Moriond EW 2015 22/10

- Use of high-purity tracks associated with the primary vertex, and not associated with the 2 leptons or the 2 jets
- Clustering of these tracks into soft track-jets with anti-k_T algorithm
- ► H_T(3): Scalar sum of 3 leading (p_T-ordered) soft track jets in the central region between the 2 tagging jets

Note: contribution of electroweak Zjj is \sim 20% for M_{jj} > 1 TeV, and \sim 5% for $\mid \Delta \eta_{jj} \mid$ > 4

Radiation patterns in Z+jets events

Selection: jets with p_{Ti} > 40 GeV and \mid $\eta_i \mid$ < 4.7 in Z+jet events

Radiation patterns in Z+jets events

Selection: jets with p_{Tj} > 40 GeV and \mid η_{j} \mid < 4.7 in Z+jet events