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The phenomenological implications of the Standard Model (SM) are governed by the accidental
symmetry structure of the dimension-4 Lagrangian. In this talk I discuss the next order in
an expansion in fields and in derivatives, that parametrize the largest effects of heavy physics
beyond the SM. The remaining symmetries of this dimension-6 Lagrangian imply relations
between experimental observables that should be used to test the consistency of deviations
from the SM, to design new physics searches and to make them more sensitive.

1 Motivation

The Higgs bosons discovery marks the culmination of searches for the Standard Model (SM)
of particle physics. All of the SM sectors have finally been probed and most of its parameters
accessed experimentally, with different levels of precision. At the same time direct searches for
physics beyond the SM (BSM) have been unsuccessful, suggesting the existence of a mass gap
between the SM states and any possible mass scale characteristic of the new physics sector.

In this situation, where the energy of our experiments seems to be insufficient to produce
BSM degrees of freedom on-shell, we can still hope that their virtual exchange induces some
visible effects, as modifications of the interactions between SM states. This represents the main
motivation to perform SM precision tests.

For these tests to bear any quantitative physical significance and for their results to be read-
ily interpretable in the framework of searches for new physics, an appropriate parametrization
of the possible departures from the SM is necessary. This parametrization is naturally provided
by an SM effective field theory (EFT), which groups all possible interaction among the SM fields
in a series expansion in inverse powers of the scale of new physics Λ: Leff = L4 + L6 + · · · ,
where L4 is made of dimension-4 operators and defines what we call the SM Lagrangian, while
L6, that contains dimension-6 operators suppressed by Λ2, gives the leading BSM effects.a From
a bottom-up perspective, these interactions can be considered necessary and their coefficients
(the scales associated with each of them) can be fixed only through experiments, in the same
way as one fixes the SM input parameters through precise measurements of the input observ-
ables (α,mZ , GF ,...). From a top-bottom perspective, on the other hand, specific BSM models
can be matched straightforwardly to the EFT description, by integrating out the relevant mas-
sive particles. This twofold interpretation of the EFT parametrization, makes it a suitable tool
to characterize departures from the SM in such a way that precision SM tests can be turned
into searching tools and their results compared with other direct or indirect searches.

In this note I review the leading departures from the SM in an EFT description. Interestingly,
of the many accidental symmetries and relations that define the SM Lagrangian, some resist at
the leading order in the EFT expansion (equivalently: the number of observables affected by
the leading EFT effects, is smaller than the number of operators characterizing the leading
EFT Lagrangian). For this reason the EFT analysis implies some relations between observables
(the analog of, e.g., the SM relation mW = mZ/ cos θW ), that represent an important piece

aAssuming lepton and baryon number conservation.



of information about the BSM structure. In fact, these relations can be used the test the
assumptions behind the EFT (e.g. a separation of scales or the exactness of the SM symmetries);
alternatively, they can be used to identify the directions that have been weakly probed by current
and past experiments and understand which observables deserve particular attention.

2 BSM Primaries

There are several possibilities to write L6. From a top-bottom perspective, different operator
bases for L6 can facilitate the comparison with explicit BSM scenarios. For instance, the SILH
basis 1 was constructed to capture the effects of universal theories (where the new physics
couples only to bosons), such as SUSY or Composite Higgsb, while the basis of Ref. 4 makes
the matching with theories with (partially) composite fermions more straightforward. From a
bottom-up perspective, however, these formulations are all equivalent as one is only interested
in complete sets of operators. In fact, from this point of view, we can treat L6 in exact analogy
with the SM Lagrangian L4: we chose the most precise experiments to fix its parameters (for
the SM, L4, we typically take α,mZ , GF ,...) and then express all other observables in terms of
these input parameters (observables in terms of observables). To this end, we must identify a
set of well-measured input observables (which are actually affected by the modifications implied
in L6) that allows us to fix the parameters in L6. This matching between coefficients in L6

and well-measured observables was performed in Refs. 5,6,7 and named BSM Primaries basis,
and I summarize it here. The first important step is to recognize that there is a class of BSM
operators, which in the gauge eigenstate basis corresponds to operators of the form |H|2×LSM ,
which can only be tested in Higgs physics 6,10. In fact, when these operators are measured in the
vacuum 〈ĥ〉 = v, they can be absorbed into a redefinition of some SM parameter and they have,
therefore, no physical effect. The number of such operators equals the number of SM parameters
which, if we limit ourselves to CP conserving quantities and a diagonal flavor structurec, reduces
to eight, which we write as:
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where f = u, d, e runs over different types of fermion. Here, I denote ĥ ≡ v + h(x) the Higgs
field, where h denotes the physical Higgs degree of freedom; ∆h includes interaction which
are irrelevant for experiments in the near future5 and I define Zµν ≡ Ẑµν − igcθWW

+
[µW

−
ν] ,

Aµν ≡ Âµν − igsθWW
+
[µW

−
ν] and W±µν ≡ Ŵ±µν ± igW±[µ(sθWA + cθWZ)ν]. Written in this way,

bSee Refs.2,3, and references therein, for analysis of the contributions to the EFT of Supersymmetric and
Composite Higgs models ?,?. .

cThese arguments can be easily extended to higher-order effects in a Minimal Flavor Violation (MFV11)
expansion6 or to more complicated flavor structures12.



L6 is automatically ready to incorporate the experimental information from measurements of
the Higgs decay and production rates: measurements of the rates h → γZ, γγ, f̄f , the pro-
duction channel GG → h and the – custodial preserving – hVµV

µ and h3 vertices (the latter
not yet accessible), allow to fix the parameters {κγZ , κγγ , δghuu, δghdd, δghee, κGG, δghV V , δg3h}. No-
tice that in the above expressions, and throughout this note, I absorb powers of m2

W /Λ
2
i or

v2/Λ2 into the coefficients κi and δgi: in this way, for the EFT to make sense, we expect
κi, δgi � 1. Unfortunately (see e.g. Refs. 8,9,13) this is not the case for the δgi couplings
at present, implying that the use of the EFT parametrization in this case is not yet justified.
However, for the κi couplings the constraints are already very stringent: at the 95% C.L.8,13,6

κγγ ∈ [−1.3, 1.8] × 10−3 , κZγ ∈ [−2, 4] × 10−2 , κGG ∈ [−1, 1] × 10−2. Then, Eqs. (1-6)
automatically imply a prediction that the coefficient of structures like hZµνZ

µν , which modifies
the differential distribution of h → ZZ∗ (see below), receives contributions from Eq. (1) and
Eq. (2), but this contribution is limited within the range of given above.

A second class of BSM effects contained in L6 can instead be measured both in Higgs physics
and in the vacuum. In the language of effective operators, these effects are associated with
structures like H†σaH, which transforms non-trivially under SU(2)L and implies measurable
EWSB effects for 〈ĥ〉 = v. In this case, at present, the measurement of these effects is more
easily performed in the vacuumd and, for this reason, we parametrize this sector of the effective
Lagrangian as,
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ZµēLγµeL −

cθW√
2

(W+µν̄LγµeL + h.c.)

]
+δgZνL

ĥ2
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(W+µūLγµdL + h.c.)

]
+δgZuL

ĥ2
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all these effects, in the vacuum, can be measured as modifications of SM couplings (meaning
that their contribution interferes with the SM in the amplitude-squared) and from a comparison
with LEP1 data, we find15

δgZeL = 0.4±0.5 × 10−3 , δgZeR = −0.1±0.3 × 10−3 , δgZν = −1.6±0.8 × 10−3 , (11)

δgZuL = −2.6±1.6 × 10−3 , δgZdL = 2.3±1 × 10−3 ,

δgZuR = −3.6±3.5 × 10−3 , δgZdR = 16.0±5.2 × 10−3 ,

dThis is not necessary true for effects that grow with energy and can be measured in V H associated production
processes, as discussed in Ref. 14.



with a correlation matrix reported in Ref.15; from LEP2 data, on the other hand, we obtaine

δg1,Z = −0.05+0.05
−0.07 and δκγ = 0.05+0.04

−0.04.

On the other hand, the following effects, which also affect Higgs and EW physics, do not
interfere with the SM:

∆LWR =δgWR
ĥ2
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for quarks q = u, d, where the coefficients are assumed to be real and T3 denotes weak isospin
(and similarly for leptons). Here δgWR is expected to be suppressed by both the down- and up-
type Yukawas in a MFV expansion so that (together with the fact that it doesn’t interfere with
the SM and its contribution is therefore suppressed in inclusive quantities) it can be neglected.
On the other hand the δκVq can be measured in dipole-type experiments and we omit the result
here.

Finally L6 includes interactions that do not involve the Higgs field. In particular
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and four-fermion interactions, which can be found in 10. LEP2 data15 gives λγ = 0.00+0.07
−0.07, while

κ3G and four-fermion interactions involving quarks can be constrained using dijet searches at
the LHC17. Interactions involving leptons and quarks can be constrained at LEP18 and LHC6,19.

In summary, Eqs. (1-6) together with Eqs. (7-10), Eqs. (12,13), Eq. (14) and the four-
fermion interactions, offer a complete parametrization of all BSM effects accessible at the leading
order in an expansion in inverse powers of the new physics scale. They are organized in such a way
that experimental (input) constraints can be readily implemented and the physical consequences
quickly extrapolated, as we show in the next section.

3 Consequences

The main predictions from this analysis are the following.6,5 First of all, from Eqs. (7,8) it is
clear that the Wff and Zff vertices are related at the level of L6, while the W dipole-type
interaction for the fermions are related to those of A and Z as can be read from Eq. (13).
Furthermore, there are only 3 types of CP-conserving TGC, characterized by20 δgZ1 , δκγ and λγ ,
while QGC are related to them through
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=
δgγZ
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and Eq. (14). Finally, there are only 8 Higgs BSM primary effects (for one family), given
in Eqs. (1-6), while all other Higgs interactions can be written as function of the param-
eters of L6 discussed so far. An interesting example is the differential distribution of h →
V ff21,22,23,24,25,26,27,28,29, whose amplitude is generically written as
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]
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eThe extraction of these parameters from data, is complicated by the limited experimental information avail-
able, as discussed in Refs. 15,16.



where q and p are respectively the total 4-momentum of V and the fermion pair in the JVf
current (JµfL,R = f̄L,Rγ

µfL,R), εµ is the polarization 4-vector of V , and I have defined
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1

p2
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Now, the coefficients aVf and bVf are associated with Lagrangian structures, such as hVµνV
µν ,

whose coefficient in L6 can be readily read from the expressions in the previous section. For the
case of h→ Zl̄l, we find

δaZlL
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∈ [−0.2, 0.1] ,
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∈ [−8, 7]× 10−2, bZlR ∈ [−3, 2]× 10−2, b̂ZlR ∈ [−2, 5]× 10−2 .

Although the allowed range in aZlL,R is quite large, we notice that their impact on the total am-

plitude, when summed over lepton chiralities, is much smaller, 2
∑

l=lL,lR
glZa

Z
l /
∑
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(glZ)2 ∈

[−6, 4]× 10−2. This implies that the expected BSM modification in the differential distribution
of Higgs decay is already fairly constrained: our analysis sets the goal for future Higgs physics
experiments to be competitive.

Interestingly, this differential distribution, although not directly tested by experimental col-
laborations so far, has been probed by measurements of the custodial parameter λWZ during
LHC Run1. In fact, momentum-dependent deformations of the hV f̄f coupling behave differ-
ently when tested in h→Wf̄f ′ or h→ Zf̄f , because of the difference between mZ and mW . In
some sense, the custodial parameter λWZ is sensitive to the SM custodial symmetry breaking,
through custodial-preserving momentum-dependent interactions. Through our analysis we find

λWZ − 1 ≡ Γ(h→WW )

ΓSM(h→WW )

ΓSM(h→ ZZ)

Γ(h→ ZZ)
− 1 ' 0.8gZ1 − 0.1κγ − 1.6κZγ ∈ [−5, 6]× 10−2 ,

We see that Eq. (18) puts a bound on λWZ stronger than the experimental limit 8: (λWZ − 1) ∈
[−0.45, 0.15].

4 Conclusions

The SM EFT motivates SM precision tests, providing a framework in which searches for depar-
tures from the SM can be interpreted as searches for new physics and can be compared with
direct searches of explicit models. In a bottom-up approach, the parameters characterizing the
leading BSM piece of this effective Lagrangian, L6, can be fixed through the most precise SM
precision tests. Then, since the parameters in L6 are less than the observables that are mod-
ified by L6, we can relate different observables and extract concrete, but generic, predictions.
This task is facilitated by writing L6 in the BSM Primaries basis, where observables can be
written in terms of other observables. Using this procedure, we have provided a quantitative
prediction for the expected variation of the differential distribution of h → V f̄f decays, for
the custodial parameter λWZ , for the W couplings to fermions, for quartic gauge couplings and
for dipole-type interactions involving the W -boson. These relations can be used to understand
which observables deserve more attention in future experiments and which, instead, are already
well measured.
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