

Higgs combination: testing the SM

Sombination: testing the SM

Measured Higgs mass

Higgs decay kinematics

The andard Model as Boson Mutual test of assumptions

Higgs production kinematics

Mutual assumption.

Higgs coupling strength

Combination of ATLAS+CMS mass measurements in

- $H \rightarrow \gamma \gamma$
- H → 4I

Aim to be agnostic to the signal yields: 3 signal strength parameter μ for

- $gg \rightarrow H \rightarrow \gamma \gamma$
- VBF H $\rightarrow \gamma \gamma$
- H → 4I

simultaneously determined from data (profiled)

After combining the mass measurements in the $H \rightarrow \gamma \gamma$ and the $H \rightarrow 4I$ channel and in ATLAS and CMS are very compatible with each other.

Tension only within the experiments

... and the ATLAS+CMS combined Higgs boson mass is:

$$m_H = 125.09 \pm 0.24 \; \mathrm{GeV}$$
 (0.19% precision!)

$$= 125.09 \pm 0.21(stat.) \pm 0.11(syst.) \text{ GeV}$$

Compatibility of the 4 m_H measurements with the combined mass: 7-10%

- Measurement is dominated by the statistical uncertainty
- Very careful check of systematic uncertainties performed:

$$m_H = 125.09 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{scale}) \pm 0.02 (\text{other}) \pm 0.01 (\text{theory}) \text{ GeV}$$

Energy scale and resolution systematic uncertainties dominate

All parameters of the SM are now known

Higgs combination: testing the SM

Higgs and associated jet kinematics

• Combination of differential measurements for the production kinematic distributions in H \rightarrow 4I and H $\rightarrow\gamma\gamma$

 Here: combination of shapes in order to be independent of BR assumptions

So far dominant sensitivity to gg→H

Results are consistent with the SM!

Higgs combination: testing (1.2)

Michael Duehrssen Higgs combination

12

Decay kinematics in H→ZZ and H→WW

- Deviations from the SM in the decay kinematics are currently probed through Spin/CP hypothesis tests and measurements
- Spin 1+2 hypothesis (in many variants) are excluded at >95%CL

Decay kinematics in H→ZZ and H→WW

 Measurement of anomalous couplings for the Spin 0 hypothesis, equivalent to EFT Lagrangian:

$$\begin{split} L(\text{HVV}) &\sim a_1 \frac{m_Z^2}{2} \text{HZ}^\mu Z_\mu + \frac{1}{\left(\Lambda_1\right)^2} m_Z^2 \text{HZ}_\mu \Box Z^\mu - \frac{1}{2} a_2 \text{HZ}^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 \text{HZ}^{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ a_1^{\text{WW}} \frac{m_W^2}{2} \text{HW}^\mu W_\mu + \frac{1}{\left(\Lambda_1^{\text{WW}}\right)^2} m_W^2 \text{HW}_\mu \Box W^\mu - \frac{1}{2} a_2^{\text{WW}} \text{HW}^{\mu\nu} W_{\mu\nu} - \frac{1}{2} a_3^{\text{WW}} \text{HW}^{\mu\nu} \tilde{W}_{\mu\nu} \\ &+ \frac{1}{\left(\Lambda_1^{\text{Z}\gamma}\right)^2} m_Z^2 \text{HZ}_\mu \partial_\nu F^{\mu\nu} - a_2^{\text{Z}\gamma} \text{HF}^{\mu\nu} Z_{\mu\nu} - a_3^{\text{Z}\gamma} \text{HF}^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} \text{HF}^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} \text{HF}^{\mu\nu} \tilde{F}_{\mu\nu}, \end{split}$$

- Combination: assume $a_i = a_i^{WW}$, $\kappa_i^{ZZ} = \kappa_i^{WW}$
- See Giacinto's and Josh's talks for details
- All results consistent with the SM!

 $(\widetilde{\kappa}_{\text{AVV}}/\kappa_{\text{SM}}) \cdot \tan \alpha$

Decay kinematics in H→ZZ and H→WW

- Unfortunately ATLAS and CMS don't use the same convention for CP measurements
- Fortunately, its possible to translate
 - → using CMS convention here

$$f_{a_2} = \frac{|\tilde{k}_{HVV}|^2 \sigma_{HVV}}{|k_{SM}|^2 \sigma_{SM} + |\tilde{k}_{HVV}|^2 \sigma_{HVV}}, \ \phi_{a_2} = \arg\left(\frac{\tilde{k}_{HVV}}{k_{SM}}\right)$$

$$f_{a_3} = \frac{|\tilde{k}_{AVV} \tan \alpha|^2 \sigma_{AVV}}{|k_{SM}|^2 \sigma_{SM} + |\tilde{k}_{AVV} \tan \alpha|^2 \sigma_{AVV}}, \ \phi_{a_3} = \arg \left(\frac{\tilde{k}_{AVV} \tan \alpha}{k_{SM}}\right)$$

• BSM CP-even (95% CL)

CMS
$$f_{a2}\cos(\phi_{a2}) \in [-0.11, 0.17]$$

ATLAS
$$f_{a2} < 0.12 \text{ for } \phi_{a2} = 0$$

 $f_{a2} < 0.16 \text{ for } \phi_{a2} = \pi$

• BSM CP-odd (95% CL)

CMS
$$f_{a3}\cos(\phi_{a3}) \in [-0.27, 0.28]$$

ATLAS
$$f_{a3} < 0.090 \text{ for } \phi_{a3} = 0$$

$$f_{a3} < 0.41 \text{ for } \phi_{a3} = \pi$$

Higgs combination: testing the SM

Combination: Measuring signal strength

- Measure the ratio μ between the observed rate and the SM expectation for σ x BR in all Higgs analysis
- Assumes SM kinematics for production and decay!

Combination: Measuring signal strength

- Measure the ratio μ between the observed rate and the SM expectation for σ x BR in all Higgs analysis
- Assumes SM kinematics for production and decay!

Signal strength: grouping by decay

 SM values for ratios between different production cross sections are assumed

Results are consistent with the SM!

Signal strength: grouping by production

- SM values for ratios between different branching fractions are assumed
- Results are consistent with the SM!
 (but we can keep hoping for a ttH excess beyond the SM)

Signal strength: gg→H versus VBF

Avoids assumptions:

- Separates gg→H (+ttH) of from VBF (+VH) in each final state
- BR(H→ff) cancels in ratio (VBF+VH)/(ggH+ttH)
- Result consistent with the SM expectation

Significance VBF: ATLAS

 $\mu(VBF) / \mu(ggH)$ 4.3 σ (3.8 σ exp.)

CMS (assuming BR as in SM)

μ(VBF) 3.7σ (3.3σ exp.)

K-framework: coupling "measurements"

 The coupling strength g of the Higgs to other SM particles is the most characteristic footprint. It scales with the mass:

Fermions:
$$g_F = \kappa_F \frac{\sqrt{2}m_F}{v}$$

Gauge bosons:
$$g_V = \kappa_V \frac{2m_V^2}{v}$$

• Encode deviations from SM with coupling scale factors κ

- Production: $\sigma_i \sim \kappa_i^2 \sigma_i^{SM}$
- Decay: $\Gamma_{i} \sim \kappa_{i}^{2} \Gamma_{i}^{SM}$
- Total width: $\Gamma_{H} = \sum_{i} \kappa_{i}^{2} \Gamma_{i}^{SM}$
- SM: by definition for all κ_i = 1
- Interference in H→γγ, gg→H, ...: → some sign-ambiguities
- Assumptions:
 - Only one Higgs
 - only scalar modifications of the coupling strength: VH, VBF, gg→H, H→VV, ... kinematics as in SM

Example:

$$\frac{\sigma \cdot \mathbf{B} \; (gg \to H \to \gamma \gamma)}{\sigma_{\mathrm{SM}}(gg \to H) \cdot \mathbf{B}_{\mathrm{SM}}(H \to \gamma \gamma)} \;\; = \;\; \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

Couplings to fermions and gauge bosons

- Test of fundamental difference between Yukawa and gauge couplings using independent scale factors for fermions and gauge bosons: κ, and κ,
- Assume: no BSM contributions to the total width $\Gamma_{\rm H}$ or to the gg \to H + H $\to\gamma\gamma$ + H \to Z γ loops beyond the effects from $\kappa_{\rm F}$ and $\kappa_{\rm V}$
- κ_F sign ambiguity resolved from interference in H $\rightarrow \gamma \gamma$, tH, gg \rightarrow ZH
- Individual channels converge on the SM quadrant and agree well with each other and the SM within uncertainties

Couplings in the fermion sector

2HDM motivated: ratios of couplings in the fermion sector

- between downand up-type fermions
- between leptons and quarks

and

For both: very good agreement to the SM expectation!

BSM contributions to gg \rightarrow H and H $\rightarrow\gamma\gamma$ loops

- The gg \to H, H $\to\gamma\gamma$ and H \to Z γ loops are especially sensitive to BSM particles. Previous fits allowed only SM particles in these loops
- Determine effective coupling scale factors for these loop induced couplings: κ_g , κ_γ and $\kappa_{z\gamma}$. Assume all other tree level couplings as in the SM: κ_i =1 for i=W, Z, t, b, τ , ...
- Can in addition fit a BSM Higgs branching ratio B_{i,u} to invisible or undetectable final states (complementary to H→invisible searches)

Generic fit to Higgs coupling ratios

- Most general "measurement" within the κ-framework:
 - No assumption on particle content in gg \rightarrow H, H $\rightarrow\gamma\gamma$, H \rightarrow Z γ loops
 - No assumptions on BSM Higgs decay modes or total width
- Drawback at the LHC: can only fit ratios of couplings $\lambda_{xy} = \kappa_x / \kappa_y$

Generic fit to Higgs coupling ratios

Couplings to W- and Z- bosons

- Custodial symmetry imposes the SM coupling ratio between the W and Z Higgs couplings (and ρ=1 as measured @ LEP)
- Measure coupling ratio $\lambda_{wz} = \kappa_w / \kappa_z$ in the most generic model to avoid assumptions on other couplings
- Results consistent with the SM

Some sensitivity to the relative sign between the W and Z coupling due to tH and gg→ZH production

Warning: these interference effects show up in kinematic distributions. **Reaching the limit of the** k-framework!

0.5

Determination of absolute Higgs couplings

- Absolute Higgs coupling "measurements" need some theory assumptions at the LHC to provide an upper bound on one coupling or the width $\Gamma_{\rm H}$. Usually: assume no BSM decays: $B_{\rm i,u}$ =0
- Here also assume only SM particles in gg \rightarrow H, H $\rightarrow\gamma\gamma$, H \rightarrow Z γ loops
- All results compatible between ATLAS and CMS and with the SM

Generic fit to absolute Higgs couplings

- Can impose several rather complementary assumptions for absolute Higgs coupling fits at the LHC:
 - Gauge couplings smaller than SM gauge couplings: κ_v≤1. This is valid for all theories with only Higgs singlets or doublets
 - Incorporate Higgs off-shell measurements and require no running of Higgs couplings:

$$\kappa_{\text{on-shell}} = \kappa_{\text{off-shell}}$$
 for κ_{g} , κ_{W} , κ_{Z}

- No BSM Higgs decay modes: BR_{i,,}=0
- Also allow BSM contributions to the loops and the total width
- Nice agreement between different assumptions and with the SM

Higgs combination: testing the SM

Michael Duehrssen Higgs combination

Summary

- Combined ATLAS+CMS measurement of the Higgs boson mass: m_H = 125.09 ± 0.24 GeV
- Combinations of Run 1 measurements in each experiment have been done for a majority of results
 - Combination of ATLAS+CMS Higgs coupling strength in preparation
- Extensive search for deviations from the SM prediction in
 - Higgs production kinematics
 - WW and ZZ Higgs decay kinematics
 - Signal strength in all categories of all observable final states and Higgs coupling strength
- Throughout, all results show very good consistency with the SM hypothesis