Towards a 1^{st} measurement of M_W at the LHC

Maarten Boonekamp,

on behalf of the ATLAS and CMS Collaborations

Outline

- Motivation. Principle of the measurement
- Statistical sensitivity and calibration systematics
- Modeling of W production and decay
- Uncertainties and constraints

Motivation

- M_W is the leading uncertainty in SM consistency tests.
- The indirect determination, and existing and future Tevatron measurements set a natural goal of $\delta M_W < 10~{\rm MeV}$ at the LHC

PDG 2014 - Chin. Phys. C38 (2014) 090001

Uncertainties – Tevatron experience and LHC expectations

Current best measurements: $\delta(stat) \approx \delta(QCD) \approx \delta(calib)$ Extrpolating to the LHC (and the next Tevatron): $\delta(QCD) > \delta(calib) > \delta(stat)$

Source	Uncertainty
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton tower removal	2
Backgrounds	3
PDFs	10
$p_T(W)$ model	5
Photon radiation	4
Statistical	12
Total	19

CDF, Phys. Rev. D 89, 072003 (2014)

 M_W measurements now dominated by modeling. Requires investing in:

- Ancillary measurements (\rightarrow constrain physics model)
- Analysis strategy (\rightarrow minimize model-dependence)

W & Z final states

- Basic objects: electron or muon (*l*); recoil (*u*)
- Derived quantities in W events:

•
$$\overrightarrow{p_T^{\nu}} = -\left(\overrightarrow{p_T^l} + \overrightarrow{u}\right), \quad E_T^{miss} = \left\|\overrightarrow{p_T^{\nu}}\right\|, \quad M_T = \sqrt{p_T^l p_T^{\nu} (1 - \cos(\Delta \phi))}$$

• Z events can be exploited for calibration: $M_{ll} \approx M_Z$, $\vec{u} \approx -\overline{p_T^{ll}}$

Measurement principle

- Example cuts at the LHC (compromise btw. statistics & systematics), at 7 TeV:
 - ATLAS: $p_T^{l,v} > 30 \text{ GeV}, \qquad M_T > 60 \text{ GeV}, \qquad u < 30 \text{ GeV}$
 - 6-9M evts/channel $\delta M_W(stat) \approx 6 MeV$
 - CMS: $55 > p_T^{l,v} > 30 \text{ GeV}, \quad 100 > M_T > 60 \text{ GeV}, \quad u < 15 \text{ GeV}$
 - 3-5M evts $\delta M_W (stat) \approx 10 MeV$
- M_W is extracted from the comparison of data with Monte-Carlo templates of the mass-sensitive distributions: p_T^l , M_T

Lepton calibration

- Z boson sample constitutes the primary calibration reference
 - Probes the energy / momentum scale to <5 MeV/channel
 - >1M evts, RMS of M_{ll} distribution ~3 GeV
- In addition, consider an energy extrapolation uncertainty: $p_T^l \approx \frac{M_Z}{2} \rightarrow \frac{M_W}{2}$
 - E.g ATLAS, electron channel: $\delta E \approx 4 5$ MeV over this range.

Recoil calibration with Z events

- Useful projections: u_{\perp} , u_{\parallel}
 - projections of \vec{u} on axis perpendicular resp. parallel to $\overrightarrow{p_T^Z}$
- Use to compare recoil resolution and response in data and MC

Kinematic peaks after selections

• CMS: from inclusive cross section measurement, 2010 data

JHEP 10 (2011) 132

Kinematic peaks after selections

- ATLAS: M_T in $W \to \mu \nu$ at 7 TeV, in 2010 (33 pb⁻¹, μ^{\sim} 1) and 2011 (1st fb⁻¹, μ <5)
 - Visible degradation in the recoil resolution

Phys. Rev. D85, 072004 (2012)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Standar dModelPublicCollisionPlots

Proton PDFs and W, Z production

- Pre-LHC: proton model dominated by DIS
 - Measured/fitted: $u_V, d_V, g, sea (\alpha_S)$
 - Theory: $c, b, evol(Q^2)$ (α_S)
 - Assumed: $\bar{u} \approx \bar{d}$; $s \approx \bar{s} \approx \bar{d}/2$
- Very precise data, but little experimental information on the flavour composition of the proton. A (very) simplified view:
 - $\sigma^{NC}, \sigma^{CC} \rightarrow u_V(x), d_V(x), sea(x)$
 - Jet prod. $\rightarrow g(x)$
 - $(F_2^c, ...)$
- Wqq' and Zqq couplings ~flavour democratic
 → Hadron colliders probe different parton combinations than those tightly constrained by DIS

W,Z production at 8 TeV

Proton PDFs and W, Z production

Wqq' and Zqq couplings ~flavour democratic
 → Hadron colliders probe different parton combinations than those tightly constrained by DIS

- Valence/sea PDF uncertainties
 - Determine the rapidity distribution \rightarrow acceptance effects
 - Valence PDFs polarize the W decay (at any $y_W \neq 0$), with corresponding uncertainties:

- Valence/sea PDF uncertainties
 - Determine the rapidity distribution \rightarrow acceptance effects
 - Valence PDFs polarize the W decay (at any $y_W \neq 0$), with corresponding uncertainties:

- Transverse momentum distribution uncertainties
 - « physics smearing » of the Jacobian peaks from uncertainties in the p_T^W distribution
 - Contributions from non-perturbative parameters (intrinsic k_T , ...) and from heavy quark PDFs

- In short, PDF uncertainties on M_W are dominated by the valence/sea ratio, and by 2nd generation partons
 - (some) anti-correlation between the two effects: enhanced strange & charm PDFs increase the total sea, reducing the impact of valence uncertainties
- Current uncertainty estimates find ~10 MeV for the most optimistic/advanced sets, but differences between sets makes the envelope larger : 20-30 MeV

arXiv:1501.05587

- Caveats:
 - PDF uncertainties are generally estimated via an approximate reweighting
 - Detector effects at best partially taken into account

Constraining PDFs: W charge asymmetry

• vs rapidity:
$$A(y) \approx \frac{u_V - d_V}{u_V + d_V + 2 r_s c}$$
 $(r_s \approx \bar{s}/\bar{d} \text{ and assuming } \bar{u} \approx \bar{d} \text{ and } s \approx \bar{s}).$

• Experiments only access η_{lep} : effect blurred by V-A. Still very discriminating information: probes a mixture of u_V/d_V and second generation quark PDFs

Constraining PDFs: W & Z cross sections and distributions

- Detailed measurements performed by ATLAS, CMS, LHCb
- Measured enhancement of Z production at $y_Z \approx 0$ is interpreted as enhanced strange density. Increasing s(x) (to $r_s \approx 1$) catches the Z data, leaving W distributions mostly unchanged:

Constraining PDFs: W + D & W + c

- Direct probe of the strange density (at LO): $g\bar{s} \rightarrow W^+\bar{c}$, $gs \rightarrow W^-c$
- Final states used: $Wc(c \rightarrow \mu)$, WD^{\pm} , WD^{*}
 - Complication: final state definition. Quark, parton or hadron level?
- ATLAS tends to « see » more charm:

Implications: Valence distributions

- Strategy (largely common to ATLAS and CMS): use HERA data by necessity; add only collider data
 - Avoid data subject to larger theoretical uncertainty
- Impact of asymmetry measurement: most significant improvement in d_V
 - d_V has more freedom as u_V is better constrained by HERA data

Phys. Rev. Lett. 109 (2012) 111806

Implications: Strange density

- Marginal agreement: ATLAS sees $r_s \approx 1$ (consistently in W/Z ratios and W+c), CMS prefers $r_s < 1$ for $x > \approx 10^{-2}$ at $Q^2 \approx M_W$
- Impact: ~20% difference in charm-induced W production, affecting y_W , p_T^W

Phys. Rev. Lett. 109 (2012) 111806

JHEP 05 (2014) 068

Modeling of p_T^W : constraints from p_T^Z

- Traditional ansatz: W and Z production are analogous, and non-perturbative effects are universal and factorize from PDFs
 - Measure p_T^Z , tune parton shower (or resummation params.), apply to W
 - Constraints from ATLAS measurement: $\delta M_W < 5$ MeV, assuming no extrapolation uncertainties
- Caution needed at the LHC: Z, W^+ and W^- all have different contributions from 2^{nd} and 3^{rd} generation PDFs (4-8 times larger than at the Tevatron)

22

An alternative : direct measurement of p_T^W

- Unfolded measurement of the recoil distribution, from ATLAS (35 pb-1, 7 TeV) and CMS (18 pb-1, 8 TeV). Requires low pile-up conditions
- Experimentally poorer than p_T^Z , but avoids a significant theoretical extrapolation
 - At low p_T: 3-5 bins, 2-3% accuracy for W (compared to ~10 bins with ~0.5% accuracy for Z)
- Worthwhile to pursue with larger luminosity
 - Needs $\approx 250 \ pb^{-1}$ at $\mu \approx 1$, driven by Z statistics

$\mathsf{A}_{\scriptscriptstyle \mathsf{FB}} \text{ and } \sin^2 \theta_W$

- Recent ATLAS result: $\sin^2 \theta_W \approx 0.2308 \pm 0.0012$; PDFs contribute 75% of the uncertainty
- Uncertainty ~10 times the world average, but only ~4 times that of the leading (and discrepant) measurements, and near the size of the LEP-SLC discrepancy: pursuing this type of measurements will help clarifying the overall picture
- Improved PDF constraints are as critical as for M_W

Summary

- Detector calibration is at the level required for a first competitive measurement.
- Physics modeling of W production is a major challenge. Factorizing the longitudinal and transverse QCD degrees of freedom is not maintainable.
 - A consistent treatment should rely on a combined PDF / resummation analysis.
 - Most relevant effects to disentangle: valence PDFs; 2nd generation partons; resummation parameters
 - Theoretical estimates of PDF uncertainties give $\delta M_W \approx 20 30$ MeV. Precise estimates at the analysis level will strongly depend on the measurement procedure
- DY measurements are critical to constrain the models.
 - W&Z cross sections; W charge asymmetry; W+charm of particular importance for the PDFs
 - p_T^Z can be measured very accurately, but PDF flavour decomposition is a pre-requisite for a correct interpretation of this measurement.
 - Measuring p_T^W provides less ambiguous constraints. Needs a significant low-pile-up data sample
 - Existing measurements are %-level or below: check experimental consistency ahead of higher-level interpretation!

Back-up

Constraining PDFs: W,Z inclusive cross sections & distributions

- Total cross sections are a test of the overall parton-parton luminosity. Ratios and distributions allow a partial decomposition of flavour contributions
- ATLAS: inclusive W & Z cross sections (7 TeV data, 33-36 pb-1)

Constraining PDFs: Drell-Yan production at and away from the Z peak

- Direct (x,Q2) mapping of neutral-current parton-parton luminosity
- Potential flavour separation via the different γ^* and Z couplings to quarks
 - Down-type fermions suppressed in $\gamma^* \rightarrow q \bar{q}$
- CMS rapidity distributions in DY production (8 TeV, 20 fb-1)

Constraining PDFs: Drell-Yan production at and away from the Z peak

- Direct (x,Q2) mapping of neutral-current parton-parton luminosity
- Potential flavour separation via the different γ^* and Z couplings to quarks
 - Down-type fermions suppressed in $\gamma^* \rightarrow q \bar{q}$
- NNLO QCD is needed to describe the data; NLO predictions are insufficient.

Partonic contributions to W,Z production : Tevatron \rightarrow LHC

$p_T^Z \rightarrow p_T^W$ extrapolation: effect of flavour composition

• The inclusive p_T^Z spectrum combines several parton configurations with different shapes. If the assumed u/d/s/c/b fractions are wrong, the resulting effect is wrongly absorbed in the non-perturbative parameters, and transmitted to p_T^W

Modeling of p_T^W : constraints from p_T^Z

- Traditional ansatz: W and Z production are analogous, and non-perturbative effects are universal
 - Measure p_T^Z , tune parton shower or resummation, apply to W
 - Impact of ATLAS measurement: $\delta M_W < 5$ MeV, assuming no extrapolation uncertainties
- This was justified at the Tevatron (up to now) but is questionable at the LHC:
 - W+ and W- production very different in pp (vs $p\bar{p}$); influence of 2nd generation PDFs ~5 times larger
 - Visible PDF dependence in data/theory comparisons: ~3% in low-pT region

Afb systematics

	$\sin^2 heta_{ m eff}^{ m lept}$
CC electron	$0.2302 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2302 \pm 0.0016$
CF electron	0.2312 ± 0.0007 (stat.) ± 0.0008 (syst.) ± 0.0010 (PDF) $= 0.2312 \pm 0.0014$
Muon	0.2307 ± 0.0009 (stat.) ± 0.0008 (syst.) ± 0.0009 (PDF) $= 0.2307 \pm 0.0015$
El. combined	$0.2308 \pm 0.0006(\text{stat.}) \pm 0.0007(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2308 \pm 0.0013$
Combined	$0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$